Альтернативные источники энергии: солнечное электричество
Santeh-nik.ru

Инженерные системы

Альтернативные источники энергии: солнечное электричество

Солнечная энергия

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия – это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы – трубчатого вида и в виде плоских коллекторов.

Принцип действия – под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия – потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя – в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика – перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса – обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы – можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.

Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году – «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.
Читать еще:  Валики малярные. Какие для чего используются

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Альтернативные источники энергии: солнечное электричество

Прошло уже более полувека с тех пор, как мир увидел первую солнечную панель. Сегодня эти устройства вышли далеко за границы космической отрасли: десятая часть электричества на нашей планете производится из солнечного света. Мы расскажем вам об использовании солнечных панелей в быту.

Используемые виды солнечных батарей

В современной гелиоэнергетике применяется два основных типа панелей: пленочные и монокристаллические. Отличие в том, что последние достаточно пластичны, но имеют низкий КПД по сравнению с тяжелыми жесткими панелями в металлических рамах.

Современные панели могут превращать в электроэнергию от 15 до 30% мощности светового потока. Продукция с более высокой эффективностью представлена в специальном сегменте рынка. Примечательно, что с ростом эффективности панелей повышается также срок их службы.

Последнее — весьма относительный показатель. Срок службы в 30 лет не означает, что по истечении этого срока панели перестанут работать. Производитель просто не гарантирует, что со временем деградация фотоэлементов не превысит 50% от первоначального показателя КПД.

Сфера применения солнечных электростанций

Электричество из солнца добывают в самых разных уголках планеты: как на национальных станциях гелиоэнергетики, так и в небольших частных комплексах. Специфику применения панелей определяет, скорее, набор экстремальных ограничений для строящегося объекта.

Для коммерческих зданий это может быть необходимость в абсолютно непрерывном энергоснабжении, что характерно для дата-центров, или, например, систем поддержания микроклимата и холодильных установок. Любое статусное заведение (частный косметологический центр, ресторан, парковка) также может позаботиться, чтобы комфорт клиентов не был нарушен внезапным отключением электричества.

Для частных застройщиков солнечная энергетика полезна, в основном, когда нет никакого другого способа электрифицировать объект. Панели — самый дешевый на данный момент источник автономного энергоснабжения для небольшого дома. Во всяком случае, он значительно дешевле, чем строительство и содержание ветряка, и уж тем более экономичнее дизельной электростанции.

Обслуживание в процессе эксплуатации

Один из главных недостатков панелей в том, что они могут полностью потерять мощность при частичном затенении поверхности. Панели, не вырабатывающие электроэнергию, но остающиеся последовательно соединенными с другими, начинают работать как потребители электричества и сводят к нулю выработку всей цепи. Поэтому основная работа по обслуживанию панелей — очистка их от пыли, разводов и мелкого мусора. Легкие загрязнения с панелей лучше просто сдувать, пятна вроде птичьего помета удаляются только мягкой щеткой с неабразивным моющим средством. После мытья панель необходимо вручную вытереть насухо и отполировать.

Было упомянуто, что в процессе эксплуатации батареи могут потерять до половины первоначальной мощности. На деле эти цифры несколько меньше: 15–30%, в зависимости от качества панели и условий эксплуатации. И это нужно учитывать при проектировании системы: рассчитав мощность «впритык» вы рискуете, что через десять лет энергосистема не справится с вашими потребностями. В то же время большинство современных гелиоэнергетических комплексов легко расширяемы, нужно лишь предусмотреть достаточную пропускную мощность управляющих и коммутационных устройств.

В конце эксплуатационного срока защитное стекло панелей заново полируют, возвращая 3–5% потерянной мощности, а затем добавляют к парку панелей еще половину ее состава. По истечении следующих 30 лет все повторяется, но теперь новые панели заменяют часть старых. Так номинальная эффективность в процессе всей службы энергоустановки остается стабильной, хоть это и требует своевременных капитальных вложений. Эти данные помогут заинтересованному обывателю иначе взглянуть на вопрос окупаемости своей установки.

Требования к условиям размещения

В месте размещения солнечных панелей должен быть достаточно высокий уровень инсоляции — количества солнечной радиации на конкретном участке местности в течение дня, недели, года. Облачность влияет на эффективность работы в меньшей степени, чем соседние здания, деревья и другие объекты, способные отбрасывать тень.

Именно по этим причинам панели традиционно размещают на крышах зданий. Считается, что для энергоснабжения дома общая площадь солнечной фермы должна быть примерно эквивалентна жилой площади. К тому же на крыше панели гарантированно не будут затенены, но для такого размещения требуются средства для подхода и перемещения людей, обслуживающих ферму. Иногда панели на крыше рассматривают как заменитель кровли. Но, во-первых, не все панели для этого пригодны, а во-вторых, это требует основательного подхода к монтажу.

Когда пригодного для монтажа панелей места на крыше недостаточно, часть их собирают на наземных конструкциях. Часто всю ферму спускают на землю для более удобного обслуживания, но это несет ряд негативных факторов:

  • сокращение периода облучения на несколько десятков минут;
  • высокий риск внезапного затенения;
  • невозможность использовать занятую территорию.

Зачастую все они нивелируются повышенной эффективностью панелей как следствием их своевременной и регулярной очистки. Что до уровня инсоляции, его можно рассчитать по панорамным фото с точной привязкой к азимуту и GPS-координатам.

Азимутально-угловое отслеживание

Еще одна особенность современных гелиосистем. Технология, предназначенная для тепловых концентраторов, так же хорошо прижилась в фотоэлектрических установках. Суть системы в том, что небольшой механизм корректирует наклон плоскости панели относительно источника излучения. Таким образом, свет почти всегда падает на панель под прямым углом, что повышает суточную генерацию на 15–25%.

Есть два типа таких систем. Первый отслеживает реальное положение солнца светочувствительным датчиком и поворачивает панель к нему. Другой имеет встроенную программу, в которой есть точные данные о местоположении солнца в каждый час светового дня на последующие 50–100 лет. Системы второго типа более надежны, хотя их настройка и монтаж не лишены трудностей.

Потенциал расширения системы

Обычно строительство солнечной фермы начинается при необходимости иметь аварийный источник хотя бы минимальной мощности (для питания котельной, сигнализации, ночного освещения). Со временем все меняется, ведется серьезная доработка системы для повышения ее производительности.

Вне зависимости от числа солнечных панелей, приобретайте спецоборудование, мощность которого соответствует вашему общему энергопотреблению. Даже если батареями будет генерироваться в десять раз меньше энергии, в таком режиме оборудование прослужит дольше, а систему можно будет дополнить без вмешательства в основные цепи.

Не забывайте также, что общей точкой в системе распределения является аккумуляторный парк. Его емкость всегда рассчитана таким образом, чтобы оставалась возможность сохранить излишки электроэнергии и не дать системе выработать заряд за несколько пасмурных дней.

Источник солнечной энергии

Дата публикации: 28 августа 2018

Становились ли вы участником обсуждений альтернативной энергии? Практически каждый человек хоть что-то, но слышал об этом. И многим даже выпадало воочию наблюдать солнечные батареи или ветровые электростанции. Сейчас развитие данной сферы энергоснабжения очень важно для дальнейшего комфортного существования человечества.

Так как основную часть традиционных ресурсов, таких как полезные ископаемые, мы практически исчерпали, приходится искать более долговечные источники. Одним из таких нетрадиционных источников энергии является солнечная энергия. Этот ресурс один из наиболее распространенных и легкодоступных, поскольку солнечный свет в том или ином количестве есть в любом уголке нашей планеты. Поэтому разработки, связанные с аккумуляцией солнечной энергией, начались достаточно давно и активно проводятся и по сей день.

Как источник энергии солнечный свет отличная альтернатива традиционным ресурсам. И при грамотном использовании вполне может вытеснить все другие энергоресурсы в будущем.

Что является источником солнечной энергии?

Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым основным источником солнечной энергии.

Читать еще:  Детский домик: шалаш

Солнце как источник энергии Солнечной системы

Мы уже знаем, что источником солнечной энергии являются водород и гелий, но ведь и сама солнечная энергия – это источник для определенных процессов. Все земные природные процессы осуществляются благодаря энергии, полученной от Солнца.

Без солнечных излучений был бы невозможным:

  • Круговорот воды в природе. Именно благодаря воздействию Солнца испаряется вода. Именно этот процесс запускает циркуляцию влаги на Земле. Повышение и понижение температуры влияет на образование облаков и выпадение осадков.
  • Фотосинтез. Процесс, благодаря которому поддерживается баланс углекислого газа и кислорода, образуются необходимые для развития и роста растений вещества также происходит с помощью солнечных лучей.
  • Циркуляция атмосферы. Солнце влияет на процессы перемещения воздушных масс и теплорегуляции.

Солнечная энергия – это основа существования жизни на Земле. Но на этом ее благотворное воздействие не заканчивается. Для человечества солнечная энергия может быть полезной как альтернативный источник энергии.

Гелиотермальная энергетика как вид автономного питания

В настоящее время активное развитие технологий сделало возможным преобразование энергии Солнца в другие применяющиеся человеком виды. Как возобновляемый источник энергии солнечная энергия получила широкое распространение и активно используется, как в промышленных масштабах, так и локально на небольших частных участках. И с каждым годом сфер, где применение гелиотермальной энергии является обыденным делом, становится все больше.

Сегодня солнечный свет как источник энергии используется:

  • В сельском хозяйстве для отопления и электроснабжения различных хозяйственных построек таких, как теплицы, ангары и прочие.
  • Для обеспечения электричества в медицинских центрах и зданий спортивного назначения.
  • Для снабжения электроэнергией населенных пунктов.
  • Для обеспечения более дешевого освещения на улицах городов.
  • Для поддержания налаженной работы всех коммуникационных систем в жилых домах.
  • Для ежедневных бытовых потребностей населения.

Исходя из этого, мы видим, что солнечная энергия в действительности может стать отличным источником питания практически в каждой сфере человеческой деятельности. Поэтому продолжение исследований в данной отрасли могут изменить привычное нынешнее существование в корни.

Активные и пассивные системы преобразования солнечной энергии

На сегодняшний день благодаря различным разработкам и методам солнечная энергия как альтернативный источник энергии может быть преобразована и аккумулирована разными способами. Сейчас существуют системы активного использования гелиоэнергии, и пассивные системы. В чем их суть?

  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света) по большей части направлены на использование прямой солнечной энергии. Пассивные системы – это здания, в которых проектирования происходило таким способом, чтобы как можно больше световой и тепловой энергии получать от Солнца.
  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы), в свою очередь, подразумевают действительно переработку полученной солнечной энергии в другие необходимые человеку виды.

Оба вида подобных систем применяются в тех или иных случаях в зависимости от потребностей, которые они должны удовлетворять. Будь то строительство экологически чистого солнечного дома или установка коллектора на участке – это в любом случае даст свой результат и будет выгодным вложением.

Солнечная электростанция как источник энергии

Что такое солнечная электростанция? Это специально организованное инженерное сооружение, благодаря которому происходят процессы преобразования солнечной радиации для дальнейшего получения электроэнергии. Конструкции подобных станций могут быть совершенно различными в зависимости от того, какой способ переработки будет применяться.

Разновидности солнечных электростанций:

  • СЭС, в основе сооружения которой находится башня.
  • Станция, сооружающаяся по тарельчатому типу.
  • Основанная на работе фотоэлектрических модулей.
  • Станции, работающие с применением параболоцилиндрических концентраторов.
  • С двигателем Стерлинга, взятым за основу работы.
  • Станции аэростатного типа.
  • Электростанции комбинированного типа.

Как мы видим, солнечная электростанция как источник энергии давно перестала быть частью утопических научно-фантастических романов и активно используется во всем мире для удовлетворения энергетических потребностей общества. В ее работе существуют как явные преимущества, так и недостатки. Но их правильный баланс дает возможность получать необходимый результат.

Плюсы и минусы солнечных электростанций

  • Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
  • Солнечные установки достаточно безопасны в использовании.
  • Подобные электростанции являются полностью автономными.
  • Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
  • Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
  • Они не прихотливы в обслуживании и достаточно просты в использовании.
  • Также для оборудования СЭС характерный долгий эксплуатационный период.
  • Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
  • Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
  • Очень высокая и малодоступная стоимость оборудования для солнечных установок.
  • Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
  • Значительное повышение температуры воздуха в пределах электростанции.
  • Потребность в использовании местности с огромной площадью.
  • Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.

Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.

Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.

Солнечная энергия – энергия будущего

Чем дальше шагает в своем техническом развитии наше общество, тем больше источников энергии может потребоваться с каждым новым этапом. Но традиционных ресурсов становится все меньше, а цена на них растет. Поэтому люди начали активнее задумываться об альтернативных вариантах энергоснабжения. И тут пришли на помощь возобновляемые источники. Энергия ветра, воды или Солнца – это новый виток, позволяющий и дальше развиваться обществу, снабжая его необходимыми ресурсами.

Вам нужно войти, чтобы оставить комментарий.

Альтернативные источники энергии для дома: солнечные батареи и ветрогенераторы

Наибольшее распространение из альтернативных источников электроэнергии получили солнечные батареи и ветрогенераторы. Обе технологии достаточно хорошо отработаны, цены на оборудование постепенно снижаются, и сейчас, например, солнечный модуль мощностью 200–250 Вт можно приобрести за 15–20 тыс. руб.

Какой и как источник выбрать?

Разные типы кремниевых солнечных батарей. Вариант с монокристаллическими модулями (пластина модуля выполнена из цельного кристалла кремния). Фото: ShutterStock/Fotodom.ru

Вначале определитесь с количеством электроэнергии, которое вам понадобится. Собираетесь ли вы построить систему энергоснабжения дома полностью на солнечной или ветровой энергии или использовать её в качестве аварийной системы энергоснабжения? Ведь ценники получаются очень разные. Для аварийной системы (с выходной мощностью 200–500 Вт) достаточно одного-двух солнечных модулей и дополнительного оборудования — всего на сумму порядка 40–50 тыс. руб. А вот полностью перейти на автономное энергоснабжение будет стоить гораздо дороже. Например, система на солнечных батареях с выходной мощностью 2500 Вт обойдётся в 300–400 тыс. руб. Аналогичный порядок цифр и в ценниках на ветрогенераторы.

Контроллеры солнечных батарей, инверторы и современные аккумуляторные батареи в условиях жилого помещения не занимают много места и не требуют отдельного помещения. Их обслуживание и эксплуатация может производиться как локально, так и удалённо, с помощью планшета или смартфона (через сеть Ethernet или Wi-Fi). Фото: ABB

С поли­­кристал­­лическими модулями (содержит несколько кристаллов). Фото: ShutterStock/Fotodom.ru

Непосредственно выбор типа «зелёного» источника зависит от климатических и географических особенностей местности. Скажем, для низкоширотных рай­онов с малооблачной погодой (например, в Крыму) лучше всего подходят солнечные батареи. В открытой местности, на возвышенностях и морском побережье, для которого характерны продолжительные сильные ветры, хорошо зарекомендовали себя ветрогенераторы. На большей части европейской России мало найдётся мест с климатом, идеально подходящим для того или иного типа генераторов электроэнергии. В таких условиях имеет смысл устанавливать оба типа генераторов, которые будут подстраховывать друг друга. Конечно, такая система получается значительно дороже — но что поделать, таковы особенности российского климата.

Читать еще:  Как выкорчевать пень на участке

Солнечные батареи

В настоящее время получили распространение два вида этих устройств: кремниевые и плёночные. Каждый из них подразделяется на типы:

  1. кремниевые монокристаллические. Каждый отдельный светоприёмный модуль выполнен на основе пластины кремния, вырезанной из цельного кристалла. Эти батареи отличаются наибольшим КПД (до 22–24 %), но и самой высокой стоимостью;
  2. кремниевые поликристаллические. Пластина отдельного модуля имеет структуру, состоящую из нескольких кристаллов кремния, за счёт чего устройство удешевляется примерно вдвое. КПД 13–15 %;
  3. кремниевые аморфные. По стоимости процентов на 20 ниже поликристаллических, КПД примерно 6–8 %;
  4. плёночные, на основе теллурида кадмия, селенида меди, полимерных материалов и др. Они появились недавно и не получили широкого распространения, но рассматриваются многими производителями как весьма перспективные. КПД и стоимость примерно на 20 % выше, чем у аморфных.

Наибольшее распространение получили сегодня панели поликристаллические и на основе аморфного кремния. Эти модификации проще в изготовлении и дешевле, нежели панели на основе монокристалла, а кроме того, батареям на основе аморфного кремния не требуется прямое облучение потоками солнечного света, они более эффективно воспроизводят электричество при рассеянном освещении и, соответственно, лучше подходят для средней полосы России, где много облачных дней. Для регионов с преобладанием ясной погоды (Крым, Центральная Азия), наоборот, лучше использовать моно- и поликристаллические батареи.

Ветрогенераторы

Ветрогенератор преобразует ветровую энергию в электрическую. Современные модели способны работать уже при небольшом ветре (2–3 м/с), хотя оптимальная скорость ветра для их работы выше и составляет обычно 10–12 м/с. При скорости ветра 3 м/с такой ветрогенератор будет выдавать примерно 5 % мощности от возможной, при скорости 7 м/с — около 50 %. Поэтому при подборе модели генератора необходимо учитывать среднегодовую скорость ветра в вашей местности, этот показатель всегда указывается в описании.

С аморфными модулями. Фото: ShutterStock/Fotodom.ru

Выбирают ветрогенератор и по величине ежемесячной выработки тока. Вы должны подсчитать, сколько электричества вам потребуется. Скажем, вы решили быть экономными и ограничиться аварийным освещением, работой циркуляционного насоса и возможностью зарядки смартфона или ноутбука. Тогда вам потребуется выходная мощность тока 150–200 Вт, это примерно 50–100 кВт • ч в месяц. Такую выработку обеспечат модели небольшой мощности, их можно приобрести сегодня за 20–30 тыс. руб. А если вам требуется больше энергии, то и ветрогенератор следует выбрать мощнее: модели, вырабатывающие за месяц несколько сотен киловатт-часов, но и цена у них будет выше — 100–150 тыс. руб.

Комплексное решение с солнечными батареями и мощными ветрогенераторами, рассчитанными на ветер, меняющийся в широком диапазоне скоростей. Фото: ShutterStock/Fotodom.ru

Аналогично производится и расчёт для солнечных батарей. Подсчитывается необходимое количество электроэнергии, и на основании расчёта подбираются модули, чтобы их совокупная производительность с гарантией обеспечивала ваши потребности. Расчёт получается чуть сложнее, так как величина ежемесячной выработки тока сильно меняется от времени года. Летом она максимальная, а зимой едва достигает 10–20 % от летней. Поэтому выбирайте солнечные батареи в зависимости от того, собираетесь ли пользоваться ими только в тёплое время года (в дачный сезон) или круглый год. Кроме того, эффективность выработки сильно зависит от того, насколько удачно вы расположили солнечные батареи. Если их не получилось развернуть в нужном направлении и под нужным углом, то эффективность выработки энергии заметно уменьшится — на 20–30 %, а то и больше. Поэтому лучше, чтобы расчёты по требуемой производительности батарей с учётом места их расположения делал специалист.

Альтернативные источники энергии. Солнце и ветер — как источники новой энергии

С каждым годом ресурсы Земли все истощаются, а вопрос, как обогреть дом остается открытым. Чтобы не остаться совсем без источника энергии, нужно рассматривать другие варианты ее получения. Источники энергии, которые распространены в современном мире, это нефть, уголь и газ. А так как все они разрабатываются в больших количествах, то хватит их ненадолго. Альтернативные источники энергии существовали рядом с людьми еще много лет назад. Использовать их намного выгоднее, потому что ресурс альтернативных источников практически бесконечен. В альтернативные источники энергии входит лучи солнца, течение воды и ветер. И хотя они были известны людям с давних времен, возможность их использования появилась только с развитием технологий.

Альтернативные источники энергии и их виды

Итак, откуда можно получать альтернативное электричество. Самые известные способы — это ветрогенераторы, солнечные батареи и коллекторы, тепловые наносы. Чтобы быть уверенным в полном и надежном получении энергии, лучше всего использовать сразу же несколько источников. Это делается для того, чтобы быть полностью автономными и максимально сэкономить ресурсы. Например, совмещают ветрогенератор и солнечные батареи. А также они могут быть установлены одновременно и работать параллельно. Будет очень эффективно использовать ветрогенератор в пасмурные дни, а солнечные батареи, когда будет солнечная погода. Для того, чтобы нагреть воду в системах отопления и водоснабжения, можно использовать тепловые насосы и солнечные коллекторы. Преимущество теплового насоса заключается в том, что снижаются затраты на охлаждения помещения, а горячая вода достанется вам совершенно бесплатно, потому что она будет побочным эффектом от работы насоса.

Альтернативные источники энергии начинаются с солнечных батареек. В них вставлены фотоэлементы, которые преобразуют солнечную энергию в электрическую. Такой источник является самым безопасным и способным перерабатывать до 40 % солнечного тепла. Для южных регионов этот способ будет самым подходящим. Он подойдет и для нагрева воды. А летом будет солнечные батареи будут работать по полной мощности. Неоспоримым преимуществом является длительный срок службы — от 25 до 50 лет. Благодаря солнечным батареям вам не понадобятся другие источники энергии, потому что вы итак будете обеспечены ее долгое время. Чтобы подсчитать какой мощности батареи вам понадобятся, достаточно проанализировать, сколько вы платите за электричество и сколько кВт-ч используете в сутки. Если брать приблизительные цифры, получится следующий расчет. К примеру, дом использует 900 кВт-ч в месяц или около 30 кВт-ч в день. Умножаем это на 0,25 и получаем — 7,5. То есть, такая система потребуется. Теперь решим, сколько панелей и какого размера потребуется. В среднем солнечная батарея вырабатывает 120 ватт или,12 кВт в день. И получаем, что для 7,5 кВт-ч понадобится 62 панели. А средний размер панели — 142 на 64 сантиметра, то 62 панели уместятся на 65 кв. метрах. Старушка Европа хороший пример, как использовать альтернативные источники энергии. Там те домовладельцы, которые получают электричество альтернативным способом, могут рассчитывать на налоговые льготы. А после того, как число таких желающих растет, рассматриваются варианты перехода на природную энергию полностью.

Ветрогенератор то же входит в группу под названием «альтернативные источники энергии«. Главная задача ветрогенераатора преобразовывать энергию ветра в электричество. При современных технологиях стало возможно использовать даже самый легкий ветерок. Про более мощные ветра и штормы говорить не приходится. Ведь чем сильнее ветер, тем быстрее будут крутится лопасти. От этого будет сильнее напряжение и сила тока. И вы будете получать максимальное количество энергии. Весьма распространен миф, что ветрогенератор издает много шума при работе. Если прибор качественный, шума от него будет ровно столько , сколько создадут лопасти. Ео главное отличие от солнечных батарей заключается в том, что установка возможно только на высокой прочной мачте. В то время как солнечные батареи можно устанавливать везде. Выбирая ветрогенератор, определите, сколько электричества вы желаете получать. Важным расчетным показателем является скорость ветра. Если брать средние показатели, то при скорости в 3-4 м/с, вы получите 250 кВт в месяц. Это может обеспечить дом с семьей в 3-4 человека горячей водой и отоплением.

Это только два источника альтернативной энергии, про которых мы рассказали сегодня.

Ссылка на основную публикацию
Adblock
detector