Радиаторы для низкотемпературной системы отопления
Santeh-nik.ru

Инженерные системы

Радиаторы для низкотемпературной системы отопления

Низкотемпературные системы отопления

Ключевой характеристикой системы отопления является ее температурный режим, который характеризуется температурой на выходе из котла (температура подачи) и на входе в котел (температура обратки), а также температурой воздуха в помещении. Традиционно в автономных системах отопления используется температурный режим, при котором температура подачи составляет +70…+80 °C, а температура обратки — +60 °C.

Низкотемпературной считается система отопления, в которой температура теплоносителя на выходе из котла составляет +60 °C, а на входе — до +40 °С.

Низкотемпературные системы: отопление будущего

Важнейшей задачей развития технологий является повышение энергоэффективности. Для решения этой задачи в системах отопления наиболее эффективным путем является уменьшение температуры теплоносителя. Именно поэтому низкотемпературное отопление является сегодня ключевой тенденцией развития современной отопительной техники.

Низкотемпературная система отопления в процессе эксплуатации расходует намного меньшее количество теплоносителя, по сравнению с традиционной системой. За счет этого обеспечивается значительная экономия. Дополнительным плюсом является снижение объема вредных выбросов в атмосферу. Кроме того, работа с «мягким» температурным режимом позволяет задействовать альтернативные виды оборудования — тепловые насосы или конденсационные котлы.

Главной проблемой развития низкотемпературного отопления длительное время оставалось то, что при низкой температуре отопления было очень сложно создать комфортные условия в обогреваемых помещениях. Однако с развитием технологий строительства, позволяющих возводить энергоэффективные здания, эта проблема была решена. Применение современных строительных и теплоизоляционных материалов дает возможность значительно сократить тепловые потери зданий. Благодаря этому низкотемпературная система отопления может качественно и эффективно обогревать дом. Достигаемый эффект от экономии теплоносителя значительно превосходит дополнительные затраты, которые приходится нести для теплоизоляции зданий.

Применение радиаторов

Первоначально в качестве низкотемпературных рассматривались только так называемые панельные системы отопления, наиболее распространенными представителями которых являются системы теплых полов. Для них характерна значительная поверхность теплообмена, что позволяет при небольшой температуре теплоносителя обеспечивать качественный обогрев.

Сегодня развитие технологий производства способствовало тому, что появилась возможность использовать для низкотемпературного отопления и радиаторы. При этом батареи должны отвечать повышенным требованиям энергоэффективности:

  • высокая теплопроводность металла;
  • значительная площадь поверхности теплообмена;
  • максимальная конвективная составляющая.

ТМ Ogint предлагает энергоэффективные алюминиевые радиаторы, которые полностью соответствуют перечисленным требованиям и идеально подходят для комплектации низкотемпературных систем отопления. При этом они произведены в полном соответствии с российскими стандартами и полностью адаптированы к отечественным условиям эксплуатации.

Так, применение алюминиевых радиаторов модели Ogint Delta Plus при создании низкотемпературных систем дает важное преимущество по сравнению с теплыми полами. Оптимальные показатели экономии и комфорта обеспечиваются в тех случаях, когда система отопления быстро реагирует на изменения наружной температуры (при ее повышении температура теплоносителя уменьшается, а при снижении — увеличивается). Современная автоматика, применяемая на котельном оборудовании, дает для этого все возможности. Минус теплых полов заключается в их инерционности. Радиаторные же системы способны реагировать на изменение внешних условий практически моментально.

Преимущества и недостатки низкотемпературных систем отопления

Низкотемпературные системы обладают целым рядом существенных преимуществ:

  • значительная экономия средств за счет уменьшения расхода энергоносителя;
  • сокращение объема вредных выбросов в атмосферу;
  • улучшение показателей комфорта. За счет малого нагрева радиаторов в помещении не сушится воздух и не возникают сильные конвективные потоки, поднимающие пыль;
  • безопасность. О радиатор с температурой +50…+60 °C нельзя обжечься, чего не скажешь о батарее, разогретой до +80 °C;
  • уменьшение нагрузки на котел, что повышает эксплуатационный ресурс оборудования;
  • возможность применения тепловых насосов, конденсационных котлов и других видов альтернативного оборудования с низким температурным режимом.

Недостатки систем отопления этого типа носят относительный характер. Так, определенным минусом можно назвать повышенные требования к используемым радиаторам. Однако применение батарей Ogint Delta Plus полностью решает все проблемы выбора отопительных приборов.

Также следует отметить, что при сильных морозах низкотемпературные системы не всегда могут справляться с обогревом зданий. В то же время система без особых проблем может быть переведена на работу в более высоком температурном режиме при наличии такой необходимости.

В целом низкотемпературные системы отопления являются более эффективными, экономичными и безопасными по сравнению с традиционными системами. Поэтому сегодня можно уверенно говорить, что будущее именно за низкотемпературным отоплением.

Низкотемпературные системы отопления с конденсационным котлом

С 1 января 2019 года владельцы частных домов обязаны устанавливать счетчики потребленного газа, если его расход составляет от 2 куб.м/час; под этот критерий подпадает большинство газовых водонагревателей, используемых для отопления дома в холодный сезон. И хотя платить по счетчику пока выгоднее, чем по нормативам, постоянное удорожание энергоносителей (за последние 10 лет газ в Подмосковье подорожал примерно в 2 раза) уже заставляет задуматься об экономии.

Низкотемпературное отопление: что это такое

Что такое конденсационный котел

Как устроен конденсационный котел

Модели и модификации

Недостатки конденсационных котлов

Один из вариантов, предлагаемых специалистами – организация низкотемпературной системы отопления в сочетании с конденсационным газовым котлом. В пример приводится опыт Европы, где подобные системы считаются очень энергоэффективными и внедряются весьма широко – в том числе в скандинавских странах, где климат вполне сравним с нашим.

Низкотемпературное отопление: что это такое

Низкотемпературные системы отопления – те, в которых температура теплоносителя «на входе» – менее 60°С, а «на выходе» – примерно 30. 40°С, при этом температура в помещении принимается как 20°С. Понятно, что при таких вводных данных отопительные приборы не будут нагреваться так же сильно, как традиционные радиаторы, рассчитанные на режим 80/60. Так что для низкотемпературного отопления чаще всего используют следующие устройства и их комбинации:

Водяной теплый пол – самый распространенный низкотемпературный отопительный прибор. Даже согласно СНиП он не должен в жилых помещениях нагреваться выше +31°С.

Конвекторы с принудительной конвекцией. Она осуществляется встроенным вентилятором и необходима для обеспечения большей теплоотдачи. Эти приборы бывают настенными, напольными, встраиваемыми внутрипольными и пр. Для работы вентилятора им необходимо подключение к электричеству.

Радиаторы, специально предназначенные для низкотемпературных систем. Они имеют увеличенную площадь поверхности и изготавливаются чаще всего из алюминия. Этот металл имеет высокую теплопроводность и низкую термоинтерность, то есть обеспечивает максимальную отдачу тепла и быстро нагревается. Возможно и использование стальных радиаторов с сильным оребрением и подобными конструктивными решениями, благодаря которым увеличивается площадь поверхности, отдающей тепло.

«Теплые плинтусы», или термоплинтусы – компактные модульные радиаторы, которые устанавливаются вдоль стен как обычный плинтус.

Водяной теплый пол

Что такое конденсационный котел

Принципиальное отличие конденсационного котла от обычного (конвекционного) – способность извлекать дополнительную тепловую энергию из дымовых газов, которые неизбежно образуются при сгорании топлива. В обычном котле горячие газы, содержащие большое количество водяного пара, просто удаляются через дымоход. В конденсационном они охлаждаются до температуры, когда содержащаяся в них вода снова переходит в жидкое состояние, т. е. конденсируется. Выделенная при этом энергия расходуется на подогрев воды. Именно поэтому в технических характеристиках подобных котлов указываются цифры КПД, кажущиеся невозможными – более 100%. Здесь действительно нет никакой ошибки: КПД теплогеренирующего оборудования обычно рассчитывают по низшей теплоте сгорания топлива без учета энергии парообразования. Конденсационный котел не только извлекает очень высокий КПД из сгорания топлива (97-98%), но и добавляет еще 11-12% за счет конденсации водяного пара. Следует заметить, что такой КПД котел выдает только в режиме 50°С/30°С; при более высокой температуре (более 57°С) конденсация прекращается и котел работает как обычный конвекционный.

Читать еще:  Датчик температуры воздуха для котла отопления

Конденсационный котел

Как устроен конденсационный котел

Устройство конденсационного котла несколько сложнее, чем у конвекционного. Во-первых, он оснащается дополнительным теплообменником из материала с высокой устойчивостью к воздействию кислоты, так как конденсат, как и любые продукты сгорания, имеет кислую реакцию. Во-вторых, конденсационные котлы всегда имеют закрытую герметичную камеру сгорания, в которую воздух для обогащения горючей смеси поступает только принудительно, с помощью специального вентилятора. В-третьих, они совместимы только с дымоходами из кислотоустойчивых материалов (огнестойкий полипропилен, кислотостойкие марки нержавеющей стали), так как конденсат имеет кислую реакцию и с течением времени способен разрушить трубы дымохода. Что касается конструкции, то лучший из возможных вариантов – коаксиальный дымоход, или «труба в трубе»: по внешней трубе поступает воздух для обдува горелки, по внутренней удаляются продукты горения.

Схема работы конденсационного котла

Воздух в котел может подаваться как с улицы, так и из помещения. В первом случае либо используются возможности коаксиального дымохода, либо организуется отдельный воздуховод. Забор воздуха из помещения возможен только в случае, когда котельная оборудована принудительной приточной вентиляцией, обеспечивающей поступление 10 м 3 воздуха на 1 м 3 сжигаемого газа, поэтому для частного хозяйства такой вариант в большинстве случаев не подходит.

Коаксиальный дымоход

Модели и модификации

Как и обычный котел, конденсационный может быть одноконтурным (отопление) или двухконтурным (отопление + горячее водоснабжение). У двухконтурных котлов приоритет имеет ГВС, то есть при включении горячей воды подача тепла системе отопления прекращается.

По способу установки котлы бывают настенными и напольными. Настенные при компактных размерах имеют очень высокую мощность (до 100 кВт), поэтому хорошо подходят для частного дома. Напольные способны выдавать тепло буквально в промышленных масштабах (15 — 19 тыс кВт) и в домашних условиях используются редко. В продаже есть модели напольных котлов со встроенным бойлером послойного нагрева – такая технология позволяет получить воду постоянной температуры в любое время.

Кроме того, котлы последних поколений оснащаются электронными системами безопасности, контроля и определения неисправностей, поддерживают большое количество настроек режимов работы и могут управляться со смартфона.

Конденсационный котел в системе отопления и ГВС

Недостатки конденсационных котлов

Главный минус конденсационного котла – неизбежная «изнанка» его плюсов: это большое количество конденсата, который необходимо утилизировать. Котлы небольшой и средней мощности при работе в режиме 50/30 выделяют в час 4-7 л конденсата, мощные напольные модели — до 50. Проблема состоит в том, что кислый конденсат, насыщенный продуктами сгорания, считается опасными отходами: сливать его в канализацию можно только в случае, если общий его объем составляет менее 1/25 всего канализационного стока; отводить конденсат в септик или просто на улицу категорически нельзя. Единственный выход – оснащение котла специальным нейтрализатором. Это емкость со щелочным фильтрующим материалом, который пропускает через себя конденсат и превращает его в жидкость с нейтральной кислотностью – ее уже можно безбоязненно сливать и в канализацию, и в септик. Чтобы автоматизировать ее удаление и не сливать вручную, нередко используют специальные компактные насосы.

Энергоэффективность стальных панельных радиаторов в низкотемпературных системах отопления

Зачастую в погоне за инновациями мы забываем о выработанных годами эффективных решениях. Вместо того, чтобы улучшать что-то старое, мы изобретаем что-то новое, совершенно забывая о том, что «новое» не означает «лучшее». Так случилось с алюминиевыми радиаторами, которые производят порядка 15—20 лет только для России и постсоветского пространства. Для сравнения — стальные панельные радиаторы Purmo производят свыше 80 лет и используют во всех странах, где необходимо отопление. Почему так происходит?

Рис. 1. Разрез алюминиевого радиатора

Рис. 2. Разрез стального радиатора

Рис. 3. Разрез конвектора

Наверняка все вы неоднократно слышали от производителей стальных панельных радиаторов (Purmo, Dianorm, Kermi и т.д.) о небывалой эффективности их оборудования в современных высокоэффективных низкотемпературных системах отопления. Но никто не удосужился объяснить — откуда же берётся эта эффективность?

Для начала давайте рассмотрим вопрос: «Для чего нужны низкотемпературные системы отопления?» Они нужны для того, чтобы можно было использовать современные высокоэффективные источники тепловой энергии, такие как конденсационные котлы и тепловые насосы. В силу специфики данного оборудования температура теплоносителя в этих системах колеблется в пределах 45-55 °C. Тепловые насосы физически не могут поднять температуру теплоносителя выше. А конденсационные котлы экономически нецелесообразно разогревать выше температуры конденсации пара 55 °С ввиду того, что при превышении этой температуры они перестают быть конденсационными и работают как традиционные котлы с традиционным КПД порядка 90 %. Кроме того, чем ниже температура теплоносителя, тем дольше проработают полимерные трубы, ведь при температуре 55 °С они деградируют 50 лет, при температуре 75 °С — 10 лет, а при 90 °С — всего три года. В процессе деградации трубы становятся хрупкими и ломаются в нагруженных местах.

С температурой теплоносителя определились. Чем она ниже (в допустимых пределах), тем эффективнее расходуются энергоносители (газ, электричество), и тем дольше работает труба. Итак, тепло из энергоносителей выделили, теплоносителю передали, в отопительный прибор доставили, теперь тепло нужно передать от отопительного прибора в помещение.

Как все мы знаем, тепло от отопительных приборов в помещение поступает двумя способами. Первый — это тепловое излучение. Второй — это теплопроводность, переходящая в конвекцию.

Давайте рассмотрим каждый способ повнимательнее.

Всем известно, что тепловое излучение — это процесс переноса тепла от более нагретого тела к менее нагретому телу посредством электромагнитных волн, то есть, по сути, это перенос тепла обычным светом, только в инфракрасном диапазоне. Именно так тепло от Солнца достигает Земли. Из-за того, что тепловое излучение по сути является светом, то к нему применимы те же физические законы, что и для света. А именно: твёрдые тела и пар практически не пропускают излучение, а вакуум и воздух, наоборот, прозрачны для тепловых лучей. И только наличие в воздухе концентрированных водяных паров или пыли уменьшает прозрачность воздуха для излучения, и часть лучистой энергии поглощается средой. Поскольку воздух в наших домах не содержит ни пара, ни плотной пыли, то очевидно, что для тепловых лучей его можно считать абсолютно прозрачным. То есть излучение не задерживается и не поглощается воздухом. Воздух не греется излучением.

Лучистый теплообмен идёт до тех пор, пока существует разница между температурами излучающей и поглощающей поверхностей.

Теперь поговорим про теплопроводность с конвекцией. Теплопроводность — это перенос тепловой энергии от нагретого тела к холодному телу при непосредственном их контакте. Конвекция — это вид теплопередачи от нагретых поверхностей за счёт движения воздуха, создаваемого архимедовой силой. То есть нагретый воздух, становясь легче, под действием архимедовой силы стремится вверх, а его место возле источника тепла занимает холодный воздух. Чем выше разница между температурами нагретого и холодного воздуха, тем больше подъёмная сила, которая выталкивает нагретый воздух вверх.

В свою очередь, конвекции мешают различные преграды, такие как подоконники, шторы. Но самое главное — это то, что конвекции воздуха мешает сам воздух, а точнее, его вязкость. И если в масштабах помещения воздух практически не мешает конвективным потокам, то, будучи «зажатым» между поверхностями, он создаёт существенное сопротивление перемешиванию. Вспомните оконный стеклопакет. Слой воздуха между стёклами тормозит сам себя, и мы получаем защиту от уличного холода.

Читать еще:  Инверторы для газовых котлов отопления

Ну, а теперь, когда мы разобрались в способах теплопередачи и их особенностях, давайте посмотрим на то, какие процессы проходят в отопительных приборах при разных условиях. При высокой температуре теплоносителя все отопительные приборы греют одинаково хорошо — мощная конвекция, мощное излучение. Однако при снижении температуры теплоносителя всё меняется.

Конвектор. Самая горячая его часть — труба с теплоносителем — находится внутри отопительного прибора. От неё греются ламели, и чем дальше от трубы, тем ламели холоднее. Температура ламелей практически равна температуре окружающей среды. Излучения от холодных ламелей нет. Конвекции при низкой температуре мешает вязкость воздуха. Тепла от конвектора крайне мало. Чтобы он грел, нужно либо повышать температуру теплоносителя, что сразу снизит эффективность системы, либо выдувать из него тёплый воздух искусственно, например, специальными вентиляторами.

Алюминиевый (секционный биметаллический) радиатор конструктивно очень похож на конвектор. Самая горячая его часть — коллекторная труба с теплоносителем — находится внутри секций отопительного прибора. От неё греются ламели, и чем дальше от трубы, тем ламели холоднее. Излучения от холодных ламелей нет. Конвекции при температуре 45-55 °С мешает вязкость воздуха. В итоге тепла от такого «радиатора» в нормальных условиях эксплуатации крайне мало. Чтобы он грел, нужно повышать температуру теплоносителя, но оправдано ли это? Таким образом, мы практически повсеместно сталкиваемся с ошибочным расчётом количества секций в алюминиевом и биметаллическом приборах, которые основываются на подборе «по номинальному температурному потоку», а не исходя из реальных температурных условий эксплуатации.

Самая горячая часть стального панельного радиатора — внешняя панель с теплоносителем — находится снаружи отопительного прибора. От неё греются ламели, и чем ближе к центру радиатора, тем ламели холоднее. А излучение от наружной панели идёт всегда

Стальной панельный радиатор. Самая горячая его часть — внешняя панель с теплоносителем — находится снаружи отопительного прибора. От неё греются ламели, и чем ближе к центру радиатора, тем ламели холоднее. Конвекции при низкой температуре мешает вязкость воздуха. А что с излучением?

Излучение от наружной панели идёт до тех пор, пока существует разница между температурами поверхностей отопительного прибора и окружающих предметов. То есть всегда.

Кроме радиатора данное полезное свойство присуще и радиаторным конвекторам, таким как, например, Purmo Narbonne. В них теплоноситель также протекает снаружи по прямоугольным трубам, а ламели конвективного элемента располагаются внутри прибора.

Применение современных энергоэффективных отопительных приборов способствует снижению затрат на отопление, а широкий ряд типоразмеров панельных радиаторов от ведущих производителей с лёгкостью помогут воплотить в жизнь проекты любой сложности.

Низкотемпературное отопление

Отопление, которое создает мягкое равномерное тепло по всему помещению без точечных источников высоких температур, называется низкотемпературным.

От высокотемпературного оно отличается:

  • нагревом теплоносителя максимум до 55 градусов, тогда как при высокотемпературном он нагревается до 70-80 градусов;
  • большей площадью излучающих тепло поверхностей.

Низкотемпературное отопление является более комфортным для организма человека, поскольку оно не сушит воздух и не способствует движению потоков пыли. Это благоприятно сказывается прежде всего на здоровье людей.

Виды низкотемпературного отопления

Существует несколько классификаций низкотемпературного отопления.

По типу теплоносителя:

  • водяное (теплоноситель вода или другие жидкие неагрессивные среды);
  • воздушное (теплые потоки воздуха);
  • паровое (для избежания конденсата используется принцип холодного пара, системы работают на теплоносителе хладон -114).

Особняком стоит электрическое низкотемпературное отопление. которое не имеет теплоносителя как такового, а работает от нагреваемого электричеством элемента.

Водяное, в свою очередь, бывает:

  • открытого типа, когда для сброса избытка давления используется расширительный бак;
  • закрытого типа, когда система является замкнутой и функционирует под давлением, при этом необходима установка манометра,автоматического воздухоотводчика и клапана для сброса лишнего давления.

По типу нагрева:

  • монолитные (одна или несколько установок, производящих тепло);
  • бивалентные (используются два типа теплогенераторов, один является запасным при необходимости в увеличении мощности);
  • комбинированные (несколько параллельно работающих теплогенераторов).

По виду излучающих тепло приборов:

Одним из самых известных на сегодняшний день видов низкотемпературного отопления является система обогрева “теплый пол”, которая может быть, как водяной (теплоноситель вода, движущаяся по уложенным на полу трубам), так и электрической (основана на нагреве электрокабеля, передающего тепло в помещение).

Элементы конструкции низкотемпературного отопления

  • Оборудование производящее тепло;
  • Приборы, излучающие тепло;
  • Тепловые аккумуляторы;
  • Насосы для циркуляции – создания давления в системе;
  • Тепловые насосы;
  • Трубы, по которым циркулирует теплоноситель.

Тепло производят котлы различного типа, энергия которых вырабатывается за счет различного топлива. Наиболее актуально для низкотемпературного отопления использование конденсационных котлов. Применение данного типа котла исключает появление в системе отопления водяного конденсата.

Приборы, излучающие тепло – это отопительные приборы, разносчики тепла. Ими могут выступать:

  • традиционные радиаторы, предназначенные для обогрева при низких температурах;
  • теплые полы и по аналогии с ним – теплые стены;
  • конвекторы, которые имеют большую поверхность соприкасания с воздухом обогреваемого помещения, в не с теплоносителем;
  • нагреваемые воздухом пластины;
  • радиаторы панельного типа, предназначенные для установки на стене, полу или потолке.

Тепловые аккумуляторы необходимы тогда, когда тепло аккумулируется для использования через промежуток времени. В качестве теплового аккумулятора могут выступать не только приборы, но и природные ресурсы, например озера или скалы.

Принцип работы основан на естественных процессах получения тепла: энергия от химических реакций, энергия возобновляемых источников, энергия солнечного света и другие.

Циркуляционные насосы являются обязательной частью любой системы отопления и несут роль равномерного распределителя теплоносителя. Тепловые насосы переносят тепло от источника с температурой ниже, чем в помещении к теплоносителю с более высокой температурой и служат для экономии тепловой энергии. Трубы служат для транспортировки теплоносителя. Выбор труб на сегодняшний день достаточно велик: по прежнему в ходу металлические трубы, которые представлены обычными стальными, трубами из легированной стали и медными. Пластиковые трубы для отопления представлены полипропиленовыми, трубами из сшитого полиэтилена и металлопластиковыми. Выбор материала труб зависит от задач, которые стоят в конкретном проекте.

Полипропиленовые трубы для низкотемпературного отопления

Оптимальным выбором труб для системы низкотемпературного отопления можно считать полипропиленовые трубы. При низкотемпературной нагрузке они не имеют равных по другим параметрам:

  • длительный срок эксплуатации до 50 лет;
  • способность выдерживать кратковременные высокотемпературные нагрузки;
  • вода, замерзающая в трубах, не нарушает их;
  • отсутствие коррозии;
  • высокая равномерная скорость потока теплоносителя, благодаря гладким стенкам;
  • низкий коэффициент теплового и линейного расширения у труб с армированием, а у бренда Aquatherm этими качествами обладают трубы без армирования;
  • экологичность;
  • высокие звукоизоляционные свойства;
  • низкая кислородопроницаемость;
  • бесперебойная работа без ремонта и обслуживания;
  • удобство и простота монтажа.

Полипропиленовые трубы для низкотемпературного отопления из сырья Fusiolen произведенные в Германии.

  • Коэффициент линейного расширения составляет 0,035 мм/м
  • Низкий коэффициент теплопроводности – всего 0.15 Вт/м*K
  • Рабочая температура 95 градусов, давление 10 бар
  • Гарантия 10 лет и 20 миллионов Евро
  • Срок службы более 50 лет
Дм. Наименование Форма поставки Цена за 1 м.
16 Труба aquatherm green pipe
SDR 7,4 16 x 2,2 мм
штанги 4 м. уточняйте
450 Труба aquatherm green pipe
SDR 11 450 x 40,9 мм
штанги 5,8 м. уточняйте
20 Труба aquatherm green pipe
SDR 7,4 20 x 2,8 мм
бухты 100 м. уточняйте

Полипропиленовые трубы для низкотемпературного отопления из сырья Fusiolen произведенные в Германии.

  • Коэффициент линейного расширения составляет 0,035 мм/м
  • Низкий коэффициент теплопроводности – всего 0.15 Вт/м*K
  • Кислородонепроницаемость по СНиП 41-01-200 и DIN 4726
  • Рабочая температура 95 градусов, давление 10 бар
  • Гарантия 10 лет и 20 миллионов Евро
  • Срок службы более 50 лет

Благодаря данным характеристикам идеальны как для высокотемпературного так и для низкотемпературного отопления.

Дм. Наименование Форма поставки Цена за 1 м.
20 Труба aquatherm blue pipe
SDR 7.4 20×2,8 мм
штанги 4 м. уточняйте
110 Труба aquatherm blue pipe
SDR 17,6 630×35,7 мм
штанги 5,8 м. уточняйте
16 Труба aquatherm blue pipe
SDR 7,4 16×2,2 мм
бухты 100 м. уточняйте

Плюсы низкотемпературного отопления

Основным плюсом является благоприятное равномерное тепло, излучаемое тепловыми приборами. Наряду с этим низкотемпературное отопление имеет еще ряд преимуществ:

  • отсутствие источников агрессивного тепла;
  • возможность использования самовозобновляющихся источников энергии, что в конечном счете ведет к более экономичному расходованию природных ресурсов;
  • возможность автоматического регулирования с помощью термостатов, благодаря небольшой разнице температур на входе и выходе из источника нагрева.

Минусы низкотемпературного отопления

Минус данных систем один – довольно дорогая стоимость. Еще одним относительным недостатком, а, скорее, особенностью можно считать сложность расчета системы. При создании комфортного климата необходимо учитывать теплопотери помещения. Поэтому для проектирования систем отопления низкотемпературного типа более рационально обратиться к специалисту, нежели в дальнейшем получить несовершенную систему.

Таким образом, низкотемпературное отопление имеет больше преимуществ, чем недостатков. При правильном расчете, выборе типа отопления и грамотном монтаже, система отопления будет создавать комфортный климат в помещении, работать долго и безотказно.

Теплоотдача радиаторов – выбор радиаторов для дома

В паспорте любого радиатора можно обнаружить данные производителя по теплоотдаче. Часто указываются цифры в диапазоне 180 – 240 Вт на одну секцию. Эти значения отчасти являются рекламным трюком, так как недостижимы при реальных условиях эксплуатации. А потребитель нередко тут же выбирает тот, у которого цифра больше.

  • Под цифрами мощности всегда имеется надпись об условиях, при которых она была достигнута, часто мелким шрифтом, например, — «при DT 50 град С».

Это и есть то условие, которое напрочь перечеркивает надежды потребителя на чудодейственный обогрев в домашних условиях от обычного радиатора. Разберемся, какая теплоотдача радиаторов будет действительно в домашней сети отопления, на что обращать внимание при выборе радиаторов и их монтаже…

Что такое ДТ, DT, dt, Δt в характеристиках радиаторов

DT, dt, Δt – разные обозначения одного и того же, — так называемого, температурного напора. Это разница между средней температурой самого радиатора и температурой воздуха в комнате, где он установлен.

От этой разницы и будет зависеть реальная теплоотдача.

  • Чем горячей радиатор, тем, больше тепла он отдаст воздуху. Чем теплее воздух в комнате, тем меньше теплоотдача радиатора.
  • Что такое средняя температура радиатора? – это среднее значение между температурой теплоносителя на подаче и обратке. Например, подача 70 град, обратка 50 град, тогда средняя температура радиатора 60 град.

При температуре воздуха в комнате 20 град, разница с радиатором со средней температурой 60 град, составит 40 град. Т.е. DT, dt, Δt = 40 град С.

Производители чаще указывают телплоотдачу одной секции радиатора при тепловом напоре Δt = 50 град С. Или просто пишут: «при подаче 80 град, обратке 60 град, воздухе в комнате 20 град.», что и соответствует dt 50 град.

Какая реальная температура радиатора

Как видим, даже Δt = 50 град С оказывается практически не достижимым результатом в домашних условиях. Автоматизированные котлы отключаются при достижении температуры в теплообменнике 80 град, при этом на подаче радиаторов в лучшем случае бывает 74 град. Чаще же эксплуатируются до 70 град на подаче. Температура обратки может колебаться в зависимости от температуры воздуха в доме, мощности теплогенератора, настроек котла… Но чаще меньше от подачи на 20 град.

Таким образом, принимаем типичную среднюю температуру радиатора как 60 град. (подача 70, обратка 50). При температуре в комнате 20 град, — Δt оказывается равным 40 град С. А если воздух в комнате прогрелся до 25 град, то и Δt = 35 град С.

Какая теплоотдача радиатора во время эксплуатации

Какую следует принять мощность одной секции?

  • Если производитель указывает Δt = 50 град, то значение, обычно представленное как 170 – 180 Вт, следует поделить на 1,3.
  • Если указывается «при температуре подачи 90 град» (т.е. Δt = 60 град), то значение (обычно 200 Вт) нужно поделить на 1,5.

В любом случае для стандартного алюминиевого радиатора с межосевым расстоянием 500 мм получается приблизительно 130 Вт на секцию. Это и нужно принимать, в общем -то, но есть еще несколько условий…

Что делать если указана теплоотдача секции больше 200 Вт

Нередко пишут, что мощность радиатора (одной стандартной секции) составляет 240 или даже больше ватт, но при этом указывают что Δt = 70 град. Т.е. производитель принимает вовсе фантастические условия эксплуатации, когда, при температуре в комнате 20 град, подача будет 100 град, а обратка 80. Тогда средняя температура радиатора составит 90 град.

Понятно, что ни в каких домашних системах отопления 100 град на подаче, кроме аварийного случая с твердотопливным котлом, не достижимы. Тем не менее, производители указывают эти цифры для того, чтобы «блеснуть» самой большой рекламой по заманиванию покупателя. Для таких случаев, когда указан Δt = 70 град, даже разработана таблица с коэффициентами для определения реальной мощности.

Переводим 240Вт на Δt = 40 град, получаем примерно 120 Вт…

Какую мощность радиаторов принять, что еще учитывать

В конечном итоге нас интересует сколько секций нужно поставить в ту или иную комнату радиатора стандартных размеров (глубина, ширина, высота) с межосевым расстоянием обычно 500 мм, или какой размер панели стального радиатора принять… Для этого нужно знать реальную теплоотдачу одной секции.

То, что мы здесь вычислили для стандартного размера алюминиевого (биметаллического, чугунного МС-140) радиатора, — мощность секции как 130 Вт, при разогретом «на всю» котле (74 град на выходе), — все же не совсем подходит для реальных условий. Часто нужен резерв мощности отопительных приборов. Т.е. желательно ставить радиаторы с запасом размеров.

  • Бывают дни с пиковыми морозами, когда желательно бы подтопить получше…
  • Многие хотят температуру побольше – все 25 град, а в отдельных местах 27 град…
  • Помещение может быть плохо утеплено, при строительстве нужно реально оценивать – «удовлетворительная» или нет теплоизоляция и вентиляция в жилище…
  • Многие рекомендуют низкотемпературный обогрев, как создающий меньше пыли.

Учитывая подобные обстоятельства можно рекомендовать устанавливать радиаторы из расчета, что мощность стандартной секции с межосевым расстоянием составляет всего 110 Вт. При этом котел большинство времени может работать в более низкотемпературном режиме – 55 – 60 град (но выше точки росы на теплообменнике).

  • Если же в доме есть теплые полы и их надежность оценивается близкой к 100%, то многие специалисты считают, что можно сэкономить и установить 50% мощности радиаторов или внутрипольные конвектора в угоду дизайну… Отказываться же вовсе от радиаторов недопустимо, разве что по обстоятельствам самой жесткой экономии…
Ссылка на основную публикацию
Adblock
detector