Разгонная петля в системе отопления
Santeh-nik.ru

Инженерные системы

Разгонная петля в системе отопления

Петля Тихельмана — надежное отопление для больших домов, как сделать

Прошли уже те времена, когда монтировались самотечные и однотрубные системы, с использованием стальных труб большого диаметра. Сейчас такие варианты оказалась бы слишком дорогие, по сравнению с современными двухтрубными, а также менее эффективными и стабильными.

Петля Тихельмана — одна из самых широко применяемых в частных домах схем отопления.
Ей свойственны устойчивость работы и равномерный прогрев всех радиаторов, — обеспечиваются главные требования, предъявляемые к системам отопления в частных домах.

Схема петля Тихельмана

Эту схему подключения отопительных приборов называют еще попутной. В ней обеспечивается следующее:

  • Для каждого радиатора сумма длин подачи и обрати одинаковая.
  • Гидравлические условия для каждого радиатора в системе одинаковые.

Если гидравлические сопротивления радиаторов равны, то через них пройдет равное количество теплоносителя с одинаковой температурой, соответственно, их тепловая мощность будет примерно равна.

Режимы работы не одинаковых радиаторов, или установленных в отдалении от магистрали, или установленных выше/ниже, в нишах…можно отрегулировать с помощью балансировочных кранов на отводах.

Подача заканчивается на последнем радиаторе, обратка начинается от первого радиатора.

Где применяется

Еще одна широко распространенная схеме отопления – тупиковая. В ней ближний к котлу радиатор будет прогреваться сильнее, а последний радиатор в тупике получит теплоносителя меньше других.
Тупиковая схема приведена на рисунке.

Для тупиковой схемы количество радиаторов в каждом плече ограничено.

Петля Тихельмана может включать в себя значительно большее количество радиаторов, чем плечо (или два плеча) тупиковой схемы. И применяться для отопления больших площадей.

Фактически петлю Тихельмана возможно применить и для отопления наибольшей площади одного этажа частного дома.

Как известно тупиковая схема без особых проблем балансируется, и работает удовлетворительно (разница мощностей радиаторов без балансировки не превышает 10%) если количество радиаторов в плече не превышает 5 шт. Соответственно на 2 плеча — до 10 шт. Свыше этого количества — область применения попутной схемы.

Можно ли петлю Тихельмана применить в небольших домах?
Можно применить даже для одного радиатора. Но скорее всего это будет сделать проблематично и (или) не экономично. У этой схемы свои недостатки.

Недостатки

Включение большого количества радиаторов в кольцо Петли Тихельмана влечет увеличение диаметра трубопроводов.

Прокладка большого диаметра по кольцу влечет увеличение денежных затрат. Попытка уменьшать диамметры (только на конечных участках кольца требуется максимальный расход) в целом не благодарное занятие. Так как гидравлические условия подключения радиаторов станут разными, систему будет сложно настроить. Как правило по кольцу применяются одинаковый большой диаметр и на подаче и на обратке. Но в принципе уменьшение диаметров труб к середине возможна, при условии если длина участки с одинаковым диаметром и подачи и обратки будет примерно равна.

Тупиковая схема, у которой подача и обратка на последний радиатор могут быть минимального диаметра, – выгодней.

Второй главный недостаток связан с необходимостью обходить трубами здание по периметру вдоль наружных стен и возвращаться к котлу. Почти везде это сделать не просто — мешают двери, высокие окна, лестничные хода и другое.

Возвращать же обратку большим диаметром по направлению назад, т.е. фактически прокладывать три трубы – не выгодно.

В больших по площадях домах, где не был выполнен должны образом проект отопления, приходится заниматься «конструированием», совмещением различных схем, обратной протяжкой трубопроводов, чтобы обеспечить качественным радиаторным обогревом все закутки.

В небольших домах в основном проще, выгодней проложить трубопроводы по стенам по тупиковой схеме.
Современные проекты предусматривают особенные решения…

Петля Тихельмана в современных больших домах

В современном дизайне частных домов не редко встречаются дополнительные двери на террасу, в сад, в неотапливаемые помещения, а также высокие окна до самого пола. Навеска труб на стены считается неприемлемой, элементом интерьера не соответствующим современным представлениям.

В основном предусматривается прокладка отопительного трубопровода под напольным покрытием в тоннелях, одетым в теплоизоляционные оболочки, чтобы не разрушать конструкции перегревом.

Полы делаются либо на лагах, либо укладывается толстая стяжка (теплый пол). Применяется в основном гибкий трубопровод, уголковые фитинги не используются.

В современных домах петля Тихельмана лишается своего главного недостатка — сложности прокладки замкнутого круга на распределитель. Может легко использоваться в небольших и больших площадях, при прокладке под полом.

В последнее время все чаще используются внутрипольные конвектора под высокими окнами. Петля Тихельмана окажется подходящей схемой для подключения конвекторов, более экономичной и устойчивой по сравнению с лучевой схемой при большом количестве (более 4 шт.) отопительных приборов.

Трубы, насосы для попутной схемы

Частные дома всегда сжатой компоновки, длинные магистрали к отопительным приборам отсутствуют, — повышенное гидравлическое сопротивление в схемах не встречается.

Рекомендации делать расчеты системы отопления излишни, так как точные теплопотери здания самостоятельно установить не удастся, а применяемое оборудование стандартно, остается лишь выбрать из пары-тройки образцов подходящее.

Для определения диаметра труб для петли Тихельмана можно воспользоваться табличными данными, зависимости диаметра от необходимой энергии.

При теплопотерях до 15 кВт (150 м кв.) площади подходящими окажутся трубы с внутренним диаметром 20 мм. Они же и используются для основных магистралей в большинстве случаев, — примерно до 8 радиаторов в кольце.

При теплопотерях от 15 до 27 кВт (до 250 м кв. площади) – нужно на магистралях применить трубы 25 мм, чтобы в дальнейшем экономичней оказалась работа насоса.

Диаметр трубопровода в петле можно уменьшить в соответствии с расчетом. И с условием указанным выше. Во всяком случае, к последнему радиатору по подаче прокладывается минимальный диаметр – 16 мм.

Все радиаторы подключаются отводками с внутренним диаметром 16мм.

Для отапливаемой площади до 180 м кв. можно применять насос 25- 40, до площади 250 м кв. — насос 25-60.

Отлично для петли Тихельмана подходят новые современные циркуляционные насосы типа Альфа, о которых можно прочитать ЗДЕСЬ

Для двухэтажного дома

Целесообразно делать общий стояк и прокладывать отдельное кольцо петли Тихельмана для каждого этажа. Важно учитывать, что энергопотери для каждого этажа будут значительно отличаться, в соответствии с этим и производится подбор радиаторов, а также диаметра труб.

Раздельные схемы в этажах позволят балансировать один этаж относительно другого и значительно упростят настройку системы. Важно лишь не забыть включить в контур попутки для каждого этажа балансировочный кран. Если этажей 2, то эти краны могут находиться рядом в котельной.

Как подключается теплый пол к Петле Тихельмана

Теплый пол подключается параллельно к попутной схеме, в пределах каждого этажа. При этом балансировочные краны радиаторной схемы на каждом этаж не должны влиять на работу теплого пола. Т.е. по схеме краны должны находиться дальше от котла, чем включение теплого пола.

Контур теплого пола со смесительным узлом обязательно снабжается своим циркуляционным насосом. Короткие контура с регулировкой ограничителями потока подключаются без дополнительного насоса, но учитываться в расчетах общей гидравлической схемы. Так как, скорее всего, понадобиться более мощный насос из-за увеличения общего расхода.

Петля Тихельмана своими руками

При монтаже системы отопления нужно не забыть вопросы слива жидкости и возможности завоздушивания.
Поэтому делать обход трубопроводом дверного проема в принципе можно, но нужно не забыть поставить воздухоотводчик в высшей точке и обеспечить слив с нижней.

В целом же не редкость, когда делают более длинные тупиковые схемы, чтобы не связываться с перепадами высоты на которые вынуждает Петля Тихельмана.

Также стоит усомниться в качестве полипропиленовой пайки, и возможно взяться за металлопласстик, как делается качественное соединение металлопластиком читайте ЗДЕСЬ

При монтаже нужно не забыть главные правила:

  • защиту твердотопливого котла от холодной обратке – как сделать
  • установку гидроаккумулятора в систему отопления, который предстоит выбрать

А также многое другое.

Нужно не забыть, что петля Тихельмана – в общем-то «нежная» схема по неравенству гидравлических сопротивлений радиаторов, поэтому все радиаторы снабжаются на обратке настроечными кранами. Подробней о подключении радиаторов можно узнать, как делается

Разгонная петля в системе отопления

Петля Тихельмана диаметр труб

Диаметры в петле Тихельмана выбираются так же, как и в двухтрубной тупиковой системе отопления. Там где расход больше, там и больше диаметр. Чем дальше от котла, тем меньше расход может получиться.

Если выбрать не правильные диаметры, то средние радиаторы будут плохо греть.

Если в напорной системе отопления не создать искусственное гидравлическое сопротивление радиаторным веткам, то тоже не будут плохо греть средние радиаторы.

Какие условия нужно соблюдать в петле Тихельмана для того, чтобы средние радиаторы грели хорошо?

Каждая радиаторная ветка должна обладать гидравлическим сопротивлением равной 0,5-1 Kvs. Это сопротивление может выдать термостатический или балансировочный клапан, который ставится на линию радиатора. Как правило, когда делается экономия на термостатических и балансировочных клапанах (то есть не устанавливаются), то каждая радиаторная ветка начинает обладать малым гидравлическим сопротивлением, что сравнимо с тем, как если бы вы просто соединили подачу и обратку трубой (Грубо сделали байпас).

Примечание: Для гравитационных систем отопления с естественной циркуляцией радиаторным веткам не нужно создавать искусственное сопротивление. Потому что за счет естественного напора теплоносителя радиаторная ветка сама влияет на свой расход.

Петля Тихельмана может применяться без насоса, но только с большими диаметрам, как это делается для гравитационных систем отопления с естественной циркуляцией. А для расчета диаметров вам поможет программа симулятор системы отопления: Подробнее о программе

Какие выбрать диаметры в петле Тихельмана?

Диаметры в петле Тихельмана не простая задача, как и выбор диаметров в двухтрубной тупиковой системе отопления. Принцип выбора диаметров зависит от расходов и потерь напора в трубопроводе.

Ниже вы увидите как выбираются диаметры.

Плохие цепи петли Тихельмана

Плохо будут работать средние радиаторы, если отсутствует искусственное гидравлическое сопротивление на радиаторных ветках. Искусственное сопротивление создается балансировочными или термостатическими клапанами. У которых пропускная способность равна 0,5 – 1,1 Kvs.

Напорная система отопления с шаровыми кранами и полипропиленовой трубой 20 мм.

Нельзя делать так на шаровых кранах:

Такая радиаторная ветка обладает малым гидравлическим сопротивлением. Она съест большой расход и другим радиаторам останется мало.

Была протестирована цепь на 5 радиаторов с магистральной трубой ПП 25мм.

Расходы у радиаторов не одинаковые. На третьем радиаторе самый маленький расход. Это вызвано тем, что на радиаторных ветках стоят шаровые краны.

Если добавить в цепь термостатические клапана, то расходы станут более разделенными поровну:

Картина уже лучше! Но диаметры можно уменьшить в некоторых местах и сэкономить на этом. Например, на подаче в магистрали до 4 радиатора и на обратке от 2 радиатора.

Читать еще:  Калориферная система отопления

Если мы попробуем на всей магистрали оставить ПП20мм, то получим следующие расходы.

Если бы мы использовали термоклапан или любое регулирующее устройство на 2 Kvs, то переход диаметров нужно было бы делать обязательно!

Потому что, если кто-нибудь полностью откроет кран, то это помешает работать нормально другим радиаторам. Встречаются регулировочные клапана для радиаторов на 5 Kvs. Ну если вы будите подкручивать нижний клапан для уменьшения пропускной способности, то тогда занимайтесь такой регулировкой. Конечно, лучше будет использовать закрытые балансировочные клапана, к которым не будет доступа к регулировке посторонними людьми.

Для того, чтобы улучшить разделение расходов на 5 радиаторов с применением регулирующих клапанов с большей пропускной способностью необходимо использовать трубы ПП32, ПП25 и ПП20.

Хорошие цепи петли Тихельмана

Критерии выбора диаметров:

Выбор диаметров для петли Тихельмана выбираелся исходя из перепада цепи максимум 1 м.в.ст. Температурный перепад радиаторов 20 градусов. Температура на входе 90 радусов. Разница выдаваемой мощности между радиаторами не превышает 200 Вт. Разница температурных перепадов между радиаторами не превышает 5 градусов.

Примечание: Указанные диаметры не применяются для низкотемпературных систем отопления. Для низкотемпературных систем нужно уменьшать температурный перепад до 10 градусов и это требует увеличение расхода в два раза.

Я приготовил цепи петель Тихельмана на 5 и 7радиаторов для металлопластиковой и полипропиленовой трубы.

5 радиаторов полипропиленовая труба, Kvs = 0,5.

5 радиаторов металлопластиковая труба, Kvs = 0,5.

7 радиаторов полипропиленовая труба, Kvs = 0,5.

В этой цепи используется ПП32 мм. Если вы поставите балансировочный клапан на 1 и 7 радиатор, то можно поменять трубу с ПП32 на ПП26 мм. Необходимо поджать балансировочные клапана на 1 и 7 радиаторах.

7 радиаторов металлопластиковая труба, Kvs = 0,5.

Тесты по выбору диаметров проводились в программе симуляторе системы отопления.

Программа применяется для тестирования систем отопления, перед тем как монтировать на объекте. Также можно тестировать существующие системы отопления, чтобы улучшать работу существующей системы отопления.

Если вам нужны расчеты диаметров для вашей системы отопления на 10 радиаторов, то обращайтесь за услугами по расчету сюда: Заказать услугу по расчету

Расчет петли тихельмана

Как и в двухтрубной тупиковой системе отопления, диаметры тоже приходится выбирать исходя из расхода и потерь напора теплоносителя. Петля Тихельмана является сложной цепью, и математический расчет сильно усложняется.

Если в двухтрубной тупиковой уравнение цепи выглядит проще, то для петли Тихельмана уравнение цепи выглядит так:

Подробнее о данном расчете рассказано в видеокурсе по расчету отопления тут: Видеокурс по расчету отопления

Как настроить петлю Тихельмана? Как настроить попутную систему отопления?

Как правило, у петли Тихельмана есть условия, когда средние радиаторы плохо греют в таком случае, как и в духтрубной тупиковой, зажимаем балансировочные клапана на радиаторах находящиеся ближе к котлу. Чем ближе радиаторы к котлу, тем сильнее зажимаем.

Система отопления Петля Тихельмана: схема и расчёт

Одна из интереснейших тем в теплотехнике — системы отопления с попутной двухтрубной подачей теплоносителя, именуемой в среде мастеров схемой Тихельмана. Устройство их действительно уникально: система практически не требует балансировки, отличается стабильностью работы, но при этом имеет и ряд недостатков.

Описание системы

В профессиональных кругах петля Тихельмана именуется двухтрубной системой отопления с попутным движением теплоносителя. Такое название полностью отражает суть и принцип работы, отличительные черты лучше всего видны на фоне двухтрубной системы с обратным движением теплоносителя, которая знакома практически всем.

Представим радиаторную сеть, развёрнутую в прямой ряд. При классической схеме тепловой узел расположен в начале этого ряда, от него вдоль всей сети следует две трубы для подачи горячего и возврата холодного теплоносителя соответственно. При этом каждый радиатор представляет собой своего рода шунт, поэтому, чем больше удаление нагревательного прибора от теплового узла, тем выше гидравлическое сопротивление в петле его подключения.

1 — Двухтрубная схема подключения радиаторов со встречным током теплоносителя в подаче и обратке; 2 — схема подключения Петля Тихельмана с попутным подключением

Если же мы ряд радиаторов свернём в кольцо, то оба его края будут примыкать к тепловому узлу. В этом случае гораздо выгоднее сделать так, чтобы возвратный трубопровод направлял теплоноситель не обратно в котельную, а продолжал следовать далее по цепочке, то есть попутно подаче. Иными словами труба подачи следует от теплового узла и заканчивается на крайнем радиаторе, в свою очередь возвратный трубопровод берет свое начало от первого радиатора и направляется в котельную. Этот же принцип может быть реализован, даже если радиаторы расположены в пространстве линейно, просто от места врезки крайнего радиатора в обратку труба разворачивается чтобы вернуть охлажденный теплоноситель. При этом на определенном участке система отопления будет трёхтрубной, так петлю Тихельмана тоже иногда называют.

Петля Тихельмана с размещением радиаторов по периметру здания. От каждого радиатора общая длина труб подачи и обратки примерно одинакова. 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — труба подачи; 5 — труба обратки; 6 — циркуляционный насос; 7 — расширительный бак

Но зачем нужны такие сложности? Если внимательно изучить схему, то окажется, что сумма длин питающего и возвратного трубопровода для каждого радиатора одинакова. Отсюда вывод: гидравлическое сопротивление каждой отдельно взятой петли подключения эквивалентно остальным участкам, то есть система попросту не нуждается в балансировке.

Область применения

Тем не менее, соблазн избежать гидравлической настройки системы не должен приводить к поспешным необдуманным решениям. Двухтрубная попутная система характеризуется высокой материалоёмкостью, потому её монтаж оправдан далеко не во всех случаях.

Рассмотрим такое понятие как степень «прижатия» нагревательного прибора при балансировке двухтрубной обратной системы. Занижая условный проход в месте подключения нескольких первых радиаторов можно сократить расход теплоносителя в них, тем самым снизив перепад давления, чтобы на последующих участках сети сохранялся достаточный напор. Если радиаторная сеть состоит из большого числа нагревательных приборов, расположенных на большом удалении друг от друга, ограничивать проток на начальных радиаторах придётся до такой степени, что протока в них будет недостаточно для нормального выделения тепла. Это вынуждает использовать насосы с более высокой производительностью, из-за чего при течении теплоносителя в отдельных узлах образуется ощутимый шум. В целом можно сказать, что устройство двухтрубной попутной системы оправдано только при количестве радиаторов более 8–10 при общей длине трубопроводного става свыше 70 м.

Материалоёмкость системы Тихельмана существенно увеличивается при невозможности завернуть радиаторную сеть в кольцо, то есть расположить отопительный трубопровод строго по периметру здания. Этому обычно мешают дверные проемы и фронты остекления в пол. В таких случаях приходится монтировать дополнительную трубу, по которой теплоноситель будет возвращаться в котельную, а поскольку общая длина произвольно взятой петли увеличивается как минимум на половину — увеличивать условный проход магистрали или производительность насоса. Избежать дополнительных затрат в принципе можно за счёт устройства коллекторной (лучевой) системы, однако лучше предварительно выполнить сравнительный расчёт материалоёмкости.

Данные по гидравлике

Работа системы, устроенной по принципу петли Тихельмана, отличается высокой стабильностью. Сей факт наглядно демонстрируется данными гидравлического расчёта, однако для этого требуется соблюдение ряда монтажных правил.

Основным функциональным элементом такой системы остаётся гидравлический насос. Он создает давление на выходе, то есть на подаче, и разрежение на входе — обратке. Численно величина обоих значений снижается по мере удаления от насоса, причём падение напора происходит не линейно, оно описывается квадратичной величиной динамического напора. Эта закономерность прослеживается и для подающей ветки, и для возвратной, условно падение можно описать на примере трубопровода длиной 100 м:

Удаление от насоса в сторону движения теплоносителя (м) Давление в подаче (% от номинального) Разрежение в обратке (% от номинального) Падение давления на радиаторе
10 90 % 5 % 95 %
20 75 % 20 % 95 %
30 55 % 35 % 90 %
50 45 % 40 % 85%
60 40 % 45 % 85 %
70 35 % 55 % 90 %
80 20 % 75 % 95 %
90 5 % 90 % 95 %

Это усреднённые данные, но даже по ним видно, что при кажущейся равномерности потери напора в середине радиаторной сети немного выше, нежели по краям. Действительно, за счёт пропорционального изменения давления и разрежения в каждом радиаторе поддерживается практически одинаковый перепад давлений в каждом нагревательном приборе, однако для корректной и стабильной работы петли Тихельмана следует соблюдать ряд правил, о которых речь пойдет дальше.

Обвязка котельной

Двухтрубная система с попутным движением теплоносителя может быть как открытой, так и закрытой. Как мы уже говорили, основным функционирующим элементом служит насос, поэтому его установки не избежать. На естественную циркуляцию не стоит рассчитывать даже при правильно организованной верхней разводке труб. Как мы уже говорили, типичная петля Тихельмана содержит 10 и более радиаторов, продавить такое плечо только гравитационным перемещением маловероятно.

На выходе подачи котла устанавливается традиционная «тройка» безопасности: автоматический воздухоотводчик, стравливающий клапан и манометр. Для открытых систем выход подачи должен быть организован вертикальным каналом до высоты образования уклона, в самой верхней точке устанавливается открытый расширительный бак. Далее труба подачи направляется непосредственно в разводящую сеть.

На обратке котла устанавливается один циркуляционный насос, производительность которого определяется гидравлическим сопротивлением всей системы. Непосредственно перед насосом располагается сетчатый фильтр, а сразу после насоса — тройник для подключения расширительного бака и манометр нижней точки. Также в этом месте выводится заправочный патрубок.

Запорная арматура котельной представлена полнопроходными шаровыми кранами, которые устанавливаются:

  • по обе стороны от насоса
  • на отводе расширительного бака
  • на заправочном патрубке
  • в точках подключения котла к магистрали

Дополнительно в котельной может быть установлена связывающая байпасная трубка, в разрыв которой монтируется электрический нормально закрытый клапан, срабатывающий при остановке циркуляции. Врезка байпаса должна осуществляться до циркуляционного насоса: байпас предназначен для защиты от температурного шока и шунтирует он теплообменник котла от магистрали, а не наоборот.

Система Тихельмана хороша также и тем, что при относительно высокой мощности радиаторной сети возможна работа от котла со встроенным комплексом гидротехнического оборудования. Однако при необходимости согласовать работу радиаторной сети и теплого пола каждое плечо системы оснащается собственным циркуляционным насосом. Если производительность в плечах существенно отличается, необходима установка гидрострелки.

Система трубопроводов

Как верхнюю, так и нижнюю разводку петли Тихельмана принято выполнять трубами PPR. Если требуется скрытая прокладка труб, рекомендуется использовать систему PEX с надвижными фитингами. Если прокладка труб выполняется в плотных основаниях, следует использовать теплоизоляционную оболочку.

Читать еще:  Воздушный насос для отопления дома

Система отопления Тихельмана для одноэтажного дома выполняется крайне просто. Трубопровод подачи теплоносителя пролегает от теплового узла вдоль всей радиаторной сети. Номинальный условный проход трубы сохраняется вплоть до предпоследнего радиатора в ряду, после чего выполняется переход на диаметр подключения радиаторов, обычно это 20 мм полипропилен или 16 мм PEX. Трубопровод возвратного тока прокладывается в том же порядке, но навстречу подаче, то есть первый радиатор по направлению тока горячего теплоносителя подключается заниженным диаметром.

Если система Тихельмана устраивается на нескольких этажах, требуется монтаж вертикального стояка. Магистральная труба подачи следует до самой высокой точки, откуда выполняется ответвление для запитки верхнего этажа. После этого магистраль разворачивается вниз, на этом участке осуществляется врезка подачи для всех нижних этажей. Общий трубопровод возвратного тока выполняется по аналогии с двухтрубной системой со встречным движением теплоносителя, то есть попросту выполняет роль сборной магистрали.

Диаметр труб для петли Тихельмана рассчитывается по общим методикам теплотехнического расчёта, основанных на выборе оптимального значения Kvs магистральных труб. При этом желательно, чтобы по ходу движения теплоносителя не происходило ступенчатого занижения условного прохода, иначе естественная балансировка системы будет не столь качественной. В системах с протяженностью разводящих трубопроводов до 120 м оптимальным считается условный проход магистральных труб не менее 270 мм 2 , а для труб подключения радиаторов — порядка 130 мм 2 .

Арматура радиаторов

Часто можно встретить мнение, что двухтрубная система отопления с попутным движением теплоносителя не нуждается в комплектации радиаторов регулировочной арматурой. Считается, что якобы этот факт нивелирует дополнительные затраты на дополнительные трубы и фитинги для них. Однако корректная работа радиаторов в таком случае вряд ли возможна.

Термостатические головки для радиаторов в системе Тихельмана должны быть установлены обязательно. Без них никак не выполнить индивидуальную настройку радиаторов в разных комнатах, что не очень комфортно при изменяющихся климатических условиях. Что до балансировочных клапанов (дросселей), то на этот счёт споры особенно жаркие. Как упоминалось выше, даже при попутном движении теплоносителя отмечается перепад давления на радиаторах. При грамотном расчёте системы это явление можно компенсировать, варьируя число секций в радиаторах разных зон. Тем не менее, если существует даже минимальный риск ошибки, лучше установить регулировочные клапаны хотя бы на нескольких первых радиаторах с каждого края.

Петля Тихельмана также может балансироваться статическими методами регулировки. Речь идёт о так называемом «шайбовании». Если гидравлическим расчётом заранее определены коэффициенты местных сопротивлений, регулировочные клапаны могут быть заменены вставками, занижающими условный проход на определённую величину. Из простейших вариантов можно предложить самостоятельно изготовленные кольцевые уплотнения с разным внутренним диаметром, которые устанавливаются в местах резьбового подключения радиаторов.

Системы отопления с естественной циркуляцией

Системы отопления с естественной циркуляцией (ЕЦ) являются самыми надежными, долговечными и неприхотливыми системами, однако в последнее время благодаря алчности менеджеров такие системы находят все меньше и меньше поклонников. Каких только небылиц не придумывают чтоб дискредитировать в глазах заказчика ЕЦ. В этой статье мы разберем все плюсы и минусы этой системы и развенчаем некоторые мифы о естественной циркуляции.

Если у вас возникли вопросы по работе сайта звоните по телефону

По этому номеру вы можете получить бесплатные консультации.

Для понимания сути вопроса предлагаю для начала разобраться как и за счет чего работает система отопления с ЕЦ и какие факторы влияют на ее работу. Смотрим рисунок. Для упрощения мы оставили котел и один радиатор, а так же убрали другие элементы системы отопления. Какждому школьнику известно, что при нагревании тела расширяются и становятся легче. Не является исключением и вода. Как видим из рисунка радиатор отопления расположен выше котла, соответственно столб холодной (более тяжелой) воды находится выше с левой части картинки и вода будет стремиться к равновесию, перетекая в правую сторону к котлу. Однако, зайдя в котел, вода нагревается, становится легче и покидает котел, вытесняемая новой порцией холодной воды. Так и происходит циркуляция. Сама Мать -природа подарила нам такой замечательный бесплатный насос и поэтому не использовать его возможности просто грешно.

Для того, чтоб этот природный насос заработал необходимо котел расположить ниже радиаторов и, чем больше будет этот перепад высот Н, тем лучше будет циркуляция. Для владельцев домов в которых топочная реализована в подвале данная система циркуляции наиболее симпатична. В силу того, что центр охлаждения радиаторов находится выше центра нагрева в котле на несколько метров, а не на какой-то десяток сантиметров, создается достаточное циркуляционное давление для успешной реализации такой системы трубами небольшого диаметра.
Так же хочется отметить, что на естественную циркуляцию влияет не только разность высот между котлом и радиаторами, а еще и разность температур между прямой и обраткой. Понятно, что при нагреве теплоносителя плотность его уменьшается и чем больше разность плотностей, тем больше создается циркуляционное давление. Если в системах с принудительной циркуляцией разность между прямой и обраткой принимается за норму в 10 градусов, то для естественной циркуляции эта разница может доходить и до 20 градусов. Страшного в этом ничего нет и на работе системы такая разница температур практически не отражается.
Если же расположить радиаторы выше котла нет никакой возможности, а хочется сделать естественную циркуляцию, то есть смысл проложить трубопровод прямой воды как можно выше и теплоизолировать подающий стояк.
Как видим из рисунка, горячая вода от котла поднимается вертикально вверх по теплоизолированному стояку, после чего она идет к радиатору по трубе с легким уклоном вниз. Пока теплоноситель дойдет до радиатора он успеет отдать некоторое количество тепла комнате в которой проложена труба, следовательно теплоноситель хоть на пару градусов, но остынет в трубе и плотность его в сравнении с подающим стояком увеличится, что и создаст циркуляционное давление и вызовет ЕЦ. Чем больше разница высот Н2, между верхней точкой системы и центром охлаждения радиатора тем лучше для системы. В некоторых случаях для улучшения работы ЕЦ могут применить специальную “разгонную петлю”, смысл которой как раз и заключается в подаче теплоизолированного стояка под потолок в виде петли, переходящей в опускной открытый стояк, где-нибудь в помещении, где он не нарушит эстетического вида. После чего трубопроводы маскируются или прячутся и расводятся к радиаторам. Гравитационная система отопления (она же ЕЦ) считается сложной системой и ее очень не любят монтажники и проектировщики. Конечно, ее же нужно считать, соблюдать уклоны, а не бросить трубы как попало да еще и лучевой разводкой. Придумывают множество причин, чтоб клиент отказался от ЕЦ.
Вот некоторые из них:

1.Гравитационные системы уступают в экономичности системам с принудительной циркуляцией.

Ну что за бред? Экономичность вашего отопления зависит от котла, но никак не от системы и радиаторов. Этой теме я посвятил целую статью. Спекуляции на тему конденсационных котлов и их сверх экономичностью здесь тоже не уместны. Потому, что необходимо создать множество условий для того, чтоб эту экономичность получить и эти условия зависят от системы в целом , а не от способа циркуляции.

2. Система с ЕЦ обходится дороже, чем система с принудительной циркуляцией.

Да действительно, гравитационную систему не соберешь одной трубой двадцатимиллиметрового диаметра, но ведь система отопления это не только трубы, а еще и котел, радиаторы, фитинги и прочие элементы. В смете затрат трубы занимают не самую весомую долю и поэтому данные доводы против ЕЦ не имеют достаточного веса.

3. Гравитационная система выглядит неэстетично и по всему дому видны трубы.

В качестве ответа приведу один пример, когда позвонил клиент и спросил совета. В двухэтажный дом с подвалом площадью 120 квадратных метров разработчики выставили смету в 12000 долларов. Начали разбираться, а там оказалось 6 насосов, 4 гребенки, 2 теплообменника, теплоаккумулятор и котел, мощность которого в 3 раза мощнее требуемой. Все это было сдобрено 240 метрами металлопластовой трубы. В силу того, что котел собирались устанавливать в подвале, а радиаторы отопления распологались на первом и втором этажах, то зашла речь о естественной циркуляции. Наша команда Teplovhate.by разработала проект гравитационной системы и помогла ее реализовать.
В газосиликатных стенах были проделаны штробы и в них уложена труба в теплоизолирующих рукавах. После опрессовки системы трубы в стенах заштукатурили. Из-за большой разницы высот между радиаторами и котлом получалось высокое циркуляционное давление и поэтому для раздающего и возвратного стояка понадобилась труба всего лишь 32 мм в диаметре, а сама система была реализована 20 и 25 миллиметровыми трубами. Система работает отлично и не вызывает никаких нареканий.
. А вот так былпа реализована ЕЦ в деревянном доме. Котельная находится в отдельной постройке в нескольких метрах от дома. Между котельной и домом была прорыта траншея, уложен бетонный лоток, сверху закрыт плитками и засыпан. Получилась подземная теплотрасса. В котельной, для облегчения циркуляции была организована разгонная петля, которая еще является источником отопления котельной. В теплотрассе трубы уложены с уклоном (от котельной поднимается к дому) и после теплотрассы разводка системы отопления выполнена между полами. В доме не видно ни одной трубы , система работает и обогревает своих хозяев.

4. Максимальная длинна на которую можно передать тепло с ЕЦ не более 30 метров

Это вообще какая-то ерунда. Если есть достаточное циркуляционное давление, то работать будет система и на 50 метров. Главное, чтоб диаметры труб не были заужены, чтоб перепад высот достаточный был, и не было воздушных пробок.
Теперь посмотрим другую сторону медали и обсудим плюсы гравитационной системы.

Энергонезависимость

Это один из самых главных козырей систем с ЕЦ. На самом деле, очень часто владельцы систем с принудительной циркуляцией задаются вопросом как обезопасить себя от различного рода катаклизмов при отключении электроэнергии. Особую опасность представляют твердотопливные котлы, которые не затухают при отказе электричества мгновенно, а продолжают гореть. При остановке насоса в таком случае происходит закипание воды в котле, что может окончиться плачевно как для котла, так и для системы. Поэтому покупаются инверторы, аккумуляторы и у хозяев появляется еще один гемор. К тому же покупка этих вещей обходится тоже не дешево.

Долговечность

До сих пор можно встретить системы отопления, которые проработали 30-40 и даже 50 лет, причем у них нет ни малейшего намека на то, что они могут выйти из строя. Чего не скажешь про систему с принудительной циркуляцией. Часто на просторах интернета можно встретить удивленные коментарии монтажников, разбиравших старую систему с ЕЦ и не обнаруживших там даже следов коррозии. Ответ прост. В гравитационных системах вода нагревается и ничто не мешает растворенным газам ее покинуть. Никакой насос не мешает газам отделиться от воды и опять же их не смешивает. Так же хочется отметить, что за счет того, что в системах с ЕЦ вода все же имеет большую температуру, то и за счет термической деаэрации из нее сразу удаляются практически все газы. В том числе и кислород, который очень любит спровоцировать язвенную коррозию.

Читать еще:  ИБП для котла отопления своими руками

Так же у данных систем есть один неоспоримый плюс. Обратите внимание на графики. Мы как-то проводили испытания системы отопления при ЕЦ и ПЦ. При мощности котла менее 13 квт и принудительной системе в твердотопливном котле на теплообменнике выпадал деготь и котел плыл конденсатом, при ЕЦ этот порог мощности снизился до 8 с небольшим квт. Объясняется все просто. За счет того, что при ЕЦ расход воды через котел меньше, она нагревается больше и следовательно нет предпосылок к образованию конденсата. Так же была замечена одна интересная особенность. При увеличении мощности котла расход воды через котел возрастал. Возрастала разница температур между прямой и обраткой и следовательно увеличивалось циркуляционное давление и расход.
Ну и под занавес этой статьи можно отметить еще такой положительный момент как способность гравитационной системы к саморегулированию. Если у вас с одного радиатора тепла отбирается больше, то к нему (за счет разности температур и плотностей воды) будет приходить больший поток теплоносителя.
Данная статья не призывает вас при выборе системы отопления останавливаться именно на этом виде циркуляции, но рекомендует не отметать ее на задний план. Из опыта монтажа и эксплуатации можно уверенно сказать, что система с Ец прекрасно дружит даже с теплыми полами, обеспечивая циркуляцию через радиаторы за счет гравитации, а через теплые полы насосом. Причем никто из них не мешает друг другу.
При грамотном и взвешенном подходе к организации циркуляции система с ЕЦ будет радовать вас на долгие годы.

Пошаговый расчет системы с естественной циркуляцией вы найдете здесь, а так же сможете обсудить статью на нашем форуме

Если вы заметили ошибку или хотите задать вопрос пишите на

glazbaikal@mail.ru

Наша группа В Контакте

Подписаться на обновления

Петля Тихельмана — надежное отопление для больших домов, как сделать

Прошли уже те времена, когда монтировались самотечные и однотрубные системы, с использованием стальных труб большого диаметра. Сейчас такие варианты оказалась бы слишком дорогие, по сравнению с современными двухтрубными, а также менее эффективными и стабильными.

Петля Тихельмана — одна из самых широко применяемых в частных домах схем отопления.
Ей свойственны устойчивость работы и равномерный прогрев всех радиаторов, — обеспечиваются главные требования, предъявляемые к системам отопления в частных домах.

Схема петля Тихельмана

Эту схему подключения отопительных приборов называют еще попутной. В ней обеспечивается следующее:

  • Для каждого радиатора сумма длин подачи и обрати одинаковая.
  • Гидравлические условия для каждого радиатора в системе одинаковые.

Если гидравлические сопротивления радиаторов равны, то через них пройдет равное количество теплоносителя с одинаковой температурой, соответственно, их тепловая мощность будет примерно равна.

Режимы работы не одинаковых радиаторов, или установленных в отдалении от магистрали, или установленных выше/ниже, в нишах…можно отрегулировать с помощью балансировочных кранов на отводах.

Подача заканчивается на последнем радиаторе, обратка начинается от первого радиатора.

Где применяется

Еще одна широко распространенная схеме отопления – тупиковая. В ней ближний к котлу радиатор будет прогреваться сильнее, а последний радиатор в тупике получит теплоносителя меньше других.
Тупиковая схема приведена на рисунке.

Для тупиковой схемы количество радиаторов в каждом плече ограничено.

Петля Тихельмана может включать в себя значительно большее количество радиаторов, чем плечо (или два плеча) тупиковой схемы. И применяться для отопления больших площадей.

Фактически петлю Тихельмана возможно применить и для отопления наибольшей площади одного этажа частного дома.

Как известно тупиковая схема без особых проблем балансируется, и работает удовлетворительно (разница мощностей радиаторов без балансировки не превышает 10%) если количество радиаторов в плече не превышает 5 шт. Соответственно на 2 плеча — до 10 шт. Свыше этого количества — область применения попутной схемы.

Можно ли петлю Тихельмана применить в небольших домах?
Можно применить даже для одного радиатора. Но скорее всего это будет сделать проблематично и (или) не экономично. У этой схемы свои недостатки.

Недостатки

Включение большого количества радиаторов в кольцо Петли Тихельмана влечет увеличение диаметра трубопроводов.

Прокладка большого диаметра по кольцу влечет увеличение денежных затрат. Попытка уменьшать диамметры (только на конечных участках кольца требуется максимальный расход) в целом не благодарное занятие. Так как гидравлические условия подключения радиаторов станут разными, систему будет сложно настроить. Как правило по кольцу применяются одинаковый большой диаметр и на подаче и на обратке. Но в принципе уменьшение диаметров труб к середине возможна, при условии если длина участки с одинаковым диаметром и подачи и обратки будет примерно равна.

Тупиковая схема, у которой подача и обратка на последний радиатор могут быть минимального диаметра, – выгодней.

Второй главный недостаток связан с необходимостью обходить трубами здание по периметру вдоль наружных стен и возвращаться к котлу. Почти везде это сделать не просто — мешают двери, высокие окна, лестничные хода и другое.

Возвращать же обратку большим диаметром по направлению назад, т.е. фактически прокладывать три трубы – не выгодно.

В больших по площадях домах, где не был выполнен должны образом проект отопления, приходится заниматься «конструированием», совмещением различных схем, обратной протяжкой трубопроводов, чтобы обеспечить качественным радиаторным обогревом все закутки.

В небольших домах в основном проще, выгодней проложить трубопроводы по стенам по тупиковой схеме.
Современные проекты предусматривают особенные решения…

Петля Тихельмана в современных больших домах

В современном дизайне частных домов не редко встречаются дополнительные двери на террасу, в сад, в неотапливаемые помещения, а также высокие окна до самого пола. Навеска труб на стены считается неприемлемой, элементом интерьера не соответствующим современным представлениям.

В основном предусматривается прокладка отопительного трубопровода под напольным покрытием в тоннелях, одетым в теплоизоляционные оболочки, чтобы не разрушать конструкции перегревом.

Полы делаются либо на лагах, либо укладывается толстая стяжка (теплый пол). Применяется в основном гибкий трубопровод, уголковые фитинги не используются.

В современных домах петля Тихельмана лишается своего главного недостатка — сложности прокладки замкнутого круга на распределитель. Может легко использоваться в небольших и больших площадях, при прокладке под полом.

В последнее время все чаще используются внутрипольные конвектора под высокими окнами. Петля Тихельмана окажется подходящей схемой для подключения конвекторов, более экономичной и устойчивой по сравнению с лучевой схемой при большом количестве (более 4 шт.) отопительных приборов.

Трубы, насосы для попутной схемы

Частные дома всегда сжатой компоновки, длинные магистрали к отопительным приборам отсутствуют, — повышенное гидравлическое сопротивление в схемах не встречается.

Рекомендации делать расчеты системы отопления излишни, так как точные теплопотери здания самостоятельно установить не удастся, а применяемое оборудование стандартно, остается лишь выбрать из пары-тройки образцов подходящее.

Для определения диаметра труб для петли Тихельмана можно воспользоваться табличными данными, зависимости диаметра от необходимой энергии.

При теплопотерях до 15 кВт (150 м кв.) площади подходящими окажутся трубы с внутренним диаметром 20 мм. Они же и используются для основных магистралей в большинстве случаев, — примерно до 8 радиаторов в кольце.

При теплопотерях от 15 до 27 кВт (до 250 м кв. площади) – нужно на магистралях применить трубы 25 мм, чтобы в дальнейшем экономичней оказалась работа насоса.

Диаметр трубопровода в петле можно уменьшить в соответствии с расчетом. И с условием указанным выше. Во всяком случае, к последнему радиатору по подаче прокладывается минимальный диаметр – 16 мм.

Все радиаторы подключаются отводками с внутренним диаметром 16мм.

Для отапливаемой площади до 180 м кв. можно применять насос 25- 40, до площади 250 м кв. — насос 25-60.

Отлично для петли Тихельмана подходят новые современные циркуляционные насосы типа Альфа, о которых можно прочитать ЗДЕСЬ

Для двухэтажного дома

Целесообразно делать общий стояк и прокладывать отдельное кольцо петли Тихельмана для каждого этажа. Важно учитывать, что энергопотери для каждого этажа будут значительно отличаться, в соответствии с этим и производится подбор радиаторов, а также диаметра труб.

Раздельные схемы в этажах позволят балансировать один этаж относительно другого и значительно упростят настройку системы. Важно лишь не забыть включить в контур попутки для каждого этажа балансировочный кран. Если этажей 2, то эти краны могут находиться рядом в котельной.

Как подключается теплый пол к Петле Тихельмана

Теплый пол подключается параллельно к попутной схеме, в пределах каждого этажа. При этом балансировочные краны радиаторной схемы на каждом этаж не должны влиять на работу теплого пола. Т.е. по схеме краны должны находиться дальше от котла, чем включение теплого пола.

Контур теплого пола со смесительным узлом обязательно снабжается своим циркуляционным насосом. Короткие контура с регулировкой ограничителями потока подключаются без дополнительного насоса, но учитываться в расчетах общей гидравлической схемы. Так как, скорее всего, понадобиться более мощный насос из-за увеличения общего расхода.

Петля Тихельмана своими руками

При монтаже системы отопления нужно не забыть вопросы слива жидкости и возможности завоздушивания.
Поэтому делать обход трубопроводом дверного проема в принципе можно, но нужно не забыть поставить воздухоотводчик в высшей точке и обеспечить слив с нижней.

В целом же не редкость, когда делают более длинные тупиковые схемы, чтобы не связываться с перепадами высоты на которые вынуждает Петля Тихельмана.

Также стоит усомниться в качестве полипропиленовой пайки, и возможно взяться за металлопласстик, как делается качественное соединение металлопластиком читайте ЗДЕСЬ

При монтаже нужно не забыть главные правила:

  • защиту твердотопливого котла от холодной обратке – как сделать
  • установку гидроаккумулятора в систему отопления, который предстоит выбрать

А также многое другое.

Нужно не забыть, что петля Тихельмана – в общем-то «нежная» схема по неравенству гидравлических сопротивлений радиаторов, поэтому все радиаторы снабжаются на обратке настроечными кранами. Подробней о подключении радиаторов можно узнать, как делается

Ссылка на основную публикацию
Adblock
detector