Сопротивление системы отопления в метрах
Santeh-nik.ru

Инженерные системы

Сопротивление системы отопления в метрах

Сопротивление системы отопления в метрах

Расчет гидравлического сопротивления в системе отопления.

Ниже будут реальные задачи.

Вы, конечно, можете воспользоваться специальными программами, для этого, но пользоваться программами весьма затруднительно, если вы не знаете основ гидравлики. Что касается некоторых программ, то в них не разжевываются формулы, по которым происходит гидравлический расчет. В некоторых программах не описываются некоторые особенности по разветвлению трубопроводов, и нахождению сопротивления в сложных схемах. И весьма затруднительно считать, это требует дополнительного образования и научно-технического подхода.

В этой статье я раскрываю для Вас абсолютный расчет (алгоритм) по нахождению гидравлического сопротивления.

Существуют местные гидравлические сопротивления, которые создают различные элементы систем, например: Шаровый кран, различные повороты, заужения или расширения, трайники и тому подобное. Казалось бы, с поворотами и сужениями понятно, а расширения в трубах тоже создают гидравлические сопротивления.

Протяженность прямой трубы тоже создает сопротивление движению. Вроде прямая труба без сужений, а все равно создает сопротивление движению. И чем длиннее труба, тем больше сопротивление в ней.

Эти сопротивления, хоть и отличаются, но для системы отопления они просто создают сопротивление движению, а вот формулы по нахождению этого сопротивления отличаются между собой.

Для системы отопления не важно, какое это сопротивление местное или по длине трубопровода. Это сопротивление одинаково действует на движение воды в трубопроводе.

Сопротивление будем измерять в метрах водяного столба. Также сопротивление можно обзывать как потеря напора в трубопроводе. Но только однозначно это сопротивление измеряется в метрах водяного столба, либо переводится в другие единицы измерения, например: Bar, атмосфера, Па (Паскаль) и тому подобное.

Что такое сопротивление в трубопроводе?

Чтобы понять это рассмотрим участок трубы.

Манометры, установленные на подающей и обратной ветке трубопроводов, показывают давление на подающей трубе и на обратной трубе. Разница между манометрами показывает перепад давления между двумя точками до насоса и после насоса.

Для примера предположим, что на подающем трубопроводе (справа) стрелка манометра указывает на 2,3 Bar, а на обратном трубопроводе (слева) стрелка манометра показывает 0,9 Bar. Это означает, что перепад давления составляет:

Величину Bar переводим в метры водяного столба, оно составляет 14 метров.

Очень важно понять, что перепад давления, напор насоса и сопротивление в трубе – это величины, которые измеряются давлением (Метрами водяного столба, Bar, Па и т.д.)

В данном случае, как указано на изображение с манометрами, разница на манометрах показывает не только перепад давления между двумя точками, но и напор насоса в данном конкретном времени, а также показывает сопротивление в трубопроводе со всеми элементами, встречающимися на пути трубопровода.

Другими словами, сопротивление системы отопления это и есть перепад давления в пути трубопровода. Насос создает этот перепад давления.

Устанавливая манометры на две разные точки, можно будет находить потери напора в разных точках трубопровода, на которые Вы установите манометры.

На стадии проектирования нет возможности создавать похожие развязки и устанавливать на них манометры, а если имеется такая возможность, то она очень затратная. Для точного расчета перепада давления манометры должны быть установлены на одинаковые трубопроводы, то есть исключить в них разность диаметров и исключить разность направление движения жидкости. Также манометры не должны быть на разных высотах от уровня горизонта.

Ученые приготовили для нас полезные формулы, которые помогают находить потери напора теоретическим способом, не прибегая к практическим проверкам.

Разберем сопротивление водяного теплого пола. Смотри изображение.

Труба металлопластиковая 16мм, внутренний диаметр 12мм.
длина трубы 40 м.
По условию обогрева, расход в контуре должен быть 1,6 л/мин
Поворотов 90 градусов соответствует: 30 шт.
Температура теплоносителя (воды): 40 градусов Цельсия.

Для решения данной задачи были использованы следующие материалы:

Первым делом находим скорость течения в трубе.

Q= 1,6 л/мин = 0,096 м 3 /ч = 0,000026666 м 3 /сек.

V = (4•0,000026666)/(3,14•0,012•0,012)=0,24 м/с

Находим число Рейнольдса

ν=0,65•10 -6 =0,00000065. Взято из таблицы. Для воды при температуре 40°С.

Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.

У меня попадает на первую область при условии

4000 0,25 = 0,3164/4430 0,25 = 0,039

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,039•(40•0,24•0,24)/(0,012•2•9,81)= 0,38 м.

Находим сопротивление на поворотах

h=ζ•(V 2 )/2•9,81=(0,31•0,24 2 )/( 2•9,81)= 0,00091 м.

Данное число умножаем на количество поворотов 90 градусов

В итоге полное сопротивление уложенной трубы составляет: 0,38+0,0273=0,4 м.

Теория о местном сопротивление

Хочу подметить процесс вычисления местных сопротивлений на поворотах и различных расширений и сужений в трубопроводе.

Потеря напора на местном сопротивление находится по этой формуле:

h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления, он будет находиться дополнительными формулами, о которых напишу ниже.
V – скорость потока жидкости. Измеряется [Метр/секунда].
g – ускорение свободного падения равен 9,81 м/с 2

В этой формуле меняется только коэффициент местного сопротивления, коэффициент местного сопротивления для каждого элемента свой.

Подробнее о нахождение коэффициента

Обычный отвод в 90 градусов.

Коэффициент местного сопротивления составляет примерно единице.

Формула для других углов:

Постепенный или плавный поворот трубы

Постепенный поворот трубы (отвод или закруглённое колено) значительно уменьшает гидравлическое сопротивление. Величина потерь существенно зависит от отношения R/d и угла α.

Коэффициент местного сопротивления для плавного поворота можно определить по экспериментальным формулам. Для поворота под углом 90° и R/d>1 он равен:

для угла поворота более 100°

Для угла поворота менее 70°

Для теплого пола, поворот трубы в 90° составляет: 0,31-0,51

где n степень сужения трубы.

ω1, ω2 – сечение внутреннего прохода трубы.

В формулу вставляется скорость течения в трубе с малым диаметром.

В формулу вставляется скорость течения в трубе с малым диаметром.

Также существуют и плавные расширения и сужения, но в них сопротивление потоку уже значительно ниже.

Внезапное расширение и сужение встречается очень часто, например, при входе в радиатор получается внезапное расширение, а при уходе жидкости из радиатора внезапное сужение. Также внезапное расширение и сужение наблюдается в гидрострелках и коллекторах.

Более детально о разветвлениях поговорим в других статьях.

Находим сопротивление для радиаторной системы отопления. Смотри изображение.

Труба металлопластиковая 16мм, внутренний диаметр 12мм.
Длина трубы 5 м.
По условию обогрева, расход в контуре радиатора должен быть 2 л/мин
Плавных поворотов 90 градусов соответствует: 2 шт.
Отводов 90 градусов: 2шт.
Внезапное расширение на входе в радиатор: 1шт.
Внезапное сужение на выходе из радиатора: 1шт.
Температура теплоносителя (воды): 60 градусов Цельсия.

Для начала посчитаем сопротивление по длине трубопровода.

Первым делом находим скорость течения в трубе.

Q= 2 л/мин = 0,096 м 3 /ч = 0,000033333 м 3 /сек.

V = (4•0,000033333)/(3,14•0,012•0,012)=0,29 м/с

Находим число Рейнольдса

ν=0,65•10 -6 =0,000000475. Взято из таблицы. Для воды при температуре 60°С.

Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения. У меня попадает на первую область при условии

4000 0,25 = 0,3164/7326 0,25 = 0,034

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,034•(5•0,29•0,29)/(0,012•2•9,81)= 0,06 м.

Находим сопротивление на плавном повороте

h=ζ•(V 2 )/2•9,81=(0,31•0,292)/( 2•9,81)= 0,0013 м.

Данное число умножаем на количество поворотов 90 градусов

Находим сопротивление на коленном (прямом 90°) повороте

Там, где имеется сужение и расширение – это тоже будет являться гидравлическим сопротивлением. Я не стану считать сужение и расширение на металлопластиковых фитингах, так как далее мы все равно затронем эту тему. Потом сами посчитаете.

h=ζ•(V 2 )/2•9,81=(2•0,292)/( 2•9,81)= 0,0086 м.

Данное число умножаем на количество поворотов 90 градусов

Находим сопротивление на входе в радиатор.

Вход в радиатор – это ни что иное как расширение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое расширение.

Минимальный диаметр примем за 15мм, а максимальный диаметр у радиатора примем за 25мм.

Находим площадь сечения двух разных диаметров:

ω1 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2

ω2 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2

h=ζ•(V 2 )/2•9,81=(0,41•0,19 2 )/( 2•9,81)= 0,00075 м.

Находим сопротивление на выходе из радиатора.

Выход из радиатора – это ни что иное как сужение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое сужение.

Площади уже известны

ω2 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2

ω1 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2

h=ζ•(V 2 )/2•9,81=(0,32•0,19 2 )/( 2•9,81)= 0,00059 м.

Далее все потери складываются, если эти потери идут последовательно друг для друга.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Читать еще:  Сплит система для отопления частного дома

Гидравлический расчёт системы отопления с учетом трубопроводов.

При проведении дальнейших расчетов мы будем использовать все основные гидравлические параметры, в том числе расход теплоносителя, гидравлическое сопротивление арматуры и трубопроводов, скорость теплоносителя и т.д. Между данными параметрами есть полная взаимосвязь, на что и нужно опираться при расчетах. domisad.org

К примеру, если повысить скорость теплоносителя, одновременно будет повышаться гидравлическое сопротивление у трубопровода. Если повысить расход теплоносителя, с учетом трубопровода заданного диаметра, одновременно возрастет скорость теплоносителя, а также гидравлическое сопротивление. И чем больше будет диаметр трубопровода, тем меньше будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа данных взаимосвязей, можно превратить гидравлический расчет системы отопления (программа расчета есть в сети) в анализ параметров эффективности и надежности работы всей системы, что, в свою очередь, поможет снизить расходы на использующиеся материалы.

Отопительная система включает в себя четыре базовых компонента: теплогенератор, отопительные приборы, трубопровод, запорная и регулирующая арматура. Данные элементы имеют индивидуальные параметры гидравлического сопротивления, которые нужно учесть при проведении расчета. Напомним, что гидравлические характеристики не отличаются постоянством. Ведущие производители материалов и отопительного оборудования в обязательном порядке указывают информацию по удельным потерям давления (гидравлические характеристики) на производимое оборудование или материалы.

Например, расчет для полипропиленовых трубопроводов компании FIRAT существенно облегчается за счет приведенной номограммы, в которой указываются удельные потери давления или напора в трубопроводе для 1 метра погонного трубы. Анализ номограммы позволяет четко проследить обозначенные выше взаимосвязи между отдельными характеристиками. В этом и состоит основная суть гидравлических расчетов.

Гидравлический расчет систем водяного отопления: расход теплоносителя

Думаем, вы уже провели аналогию между термином «расход теплоносителя» и термином «количество теплоносителя». Так вот, расход теплоносителя будет напрямую зависеть от того, какая тепловая нагрузка приходится на теплоноситель в процессе перемещения им тепла к отопительному прибору от теплогенератора.

Гидравлический расчет подразумевает определение уровня расхода теплоносителя, касательно заданного участка. Расчетный участок представляет собой участок со стабильным расходом теплоносителя и с постоянным диаметром.

Гидравлический расчет систем отопления: пример

Если ветка включает в себя десять киловаттных радиаторов, а расход теплоносителя рассчитывался на перенос энергии тепла на уровне 10 киловатт, то расчетный участок будет представлять собой отрезом от теплогенератора до радиатора, который в ветке является первым. Но только при условии, что данный участок характеризуется постоянным диаметром. Второй участок располагается между первым радиатором и вторым радиатором. При этом, если в первом случае высчитывался расход переноса 10-киловаттной тепловой энергии, то на втором участке расчетное количество энергии будет составлять уже 9 киловатт, с постепенным уменьшением по мере проведения расчетов. Гидравлическое сопротивление должно рассчитываться одновременно для подающего и обратного трубопровода.

Гидравлический расчет однотрубной системы отопления подразумевает вычисление расхода теплоносителя

для расчетного участка по следующей формуле:

Qуч –тепловая нагрузка расчетного участка в ваттах. К примеру, для нашего примера нагрузка тепла на первый участок будет составлять 10000 ватт или 10 киловатт.

с (удельная теплоемкость для воды) – постоянная, равная 4,2 кДж/(кг•°С)

tг –температура горячего теплоносителя в отопительной системе.

tо –температура холодного теплоносителя в отопительной системе.

Гидравлический расчет системы отопления: скорость потока теплоносителя

Минимальная скорость теплоносителя должна принимать пороговое значение 0,2 — 0,25 м/с. Если скорость будет меньше, из теплоносителя будет выделяться избыточный воздух. Это приведет к появлению в системе воздушных пробок, что, в свою очередь, может служить причиной частичного или полного отказа отопительной системы. Что касается верхнего порога, то скорость теплоносителя должна достигать 0,6 — 1,5 м/с. Если скорость не будет подниматься выше данного показателя, то в трубопроводе не будут образовываться гидравлические шумы. Практика показывает, что оптимальный скоростной диапазон для отопительных систем составляет 0,3 — 0,7 м/с.

Если есть необходимость рассчитать диапазон скорости теплоносителя более точно, то придется брать в расчет параметры материала трубопроводов в отопительной системе. Точнее, вам понадобится коэффициент шероховатости для внутренней трубопроводной поверхности. К примеру, если речь идет о трубопроводах из стали, то оптимальной считается скорость теплоносителя на уровне 0,25 — 0,5 м/с. Если трубопровод полимерных или медный, то скорость можно увеличить до 0,25 – 0,7 м/с. Если хотите перестраховаться, внимательно почитайте, какая скорость рекомендуется производителями оборудования для систем отопления. Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Расчет гидравлического сопротивления системы отопления: потеря давления

Потеря давления на определенном участке системы, которую также называют термином «гидравлическое сопротивление», представляет собой сумму всех потерь на гидравлическое трение и в локальных сопротивлениях. Данный показатель, измеряемый в Па, высчитывается по формуле:

ΔPуч=R* l + ( (ρ * ν2) / 2) * Σζ

где
ν — скорость используемого теплоносителя, измеряемая в м/с.

ρ — плотность теплоносителя, измеряемая в кг/м3.

R –потери давления в трубопроводе, измеряемые в Па/м.

l – расчетная длина трубопровода на участке, измеряемая в м.

Σζ — сумма коэффициентов локальных сопротивлений на участке оборудования и запорно-регулирующей арматуры.

Что касается общего гидравлического сопротивления, то оно представляет собой сумму всех гидравлических сопротивлений расчетных участков.

Гидравлический расчет двухтрубной системы отопления: выбор основной ветви системы

Если система характеризуется попутным движением теплоносителя, то для двухтрубной системы выбирается кольцо самого загруженного стояка через нижний прибор отопления. Для однотрубной системы – кольцо через самый загруженный стояк.

Если система характеризуется тупиковым движением теплоносителя, то для двухтрубной системы выбирается кольцо нижнего прибора отопления для самого загруженного из наиболее удаленных стояков. Соответственно, для однотрубной отопительной системы выбирается кольцо через наиболее загруженный из удаленных стояков.

Если речь идет о горизонтальной отопительной системе, то выбирается кольцо через наиболее загруженную ветвь, относящуюся к нижнему этажу. Говоря о загрузке, мы имеем в виду показатель «тепловая нагрузка», который был описан выше.

Как правильно клеить флизелиновые обои — подготовка, поклейка, фризы и углы.

Какой ламинат лучше купить для пола, выбор хорошего покрытия.

Основные характеристики бетона, маркировка, свойства и вес.

Как укрепить фундамент дома с учетом осадки: анализ, предварительные работы, возможная замена.

Монтаж систем отопления в квартире своими руками.

Керамзитобетон — преимущества и недостатки, применение в строительстве.

Обзор оборудования и технологий производства пенобетона, установки.

Как выбрать защитные роллеты ( ролета ) — на окна и двери.

Плохая вентиляция в квартире и ее установка своими руками.

Как сделать белый пол с помощью белого масла и воска?

Не забывайте читать комментарии! Там тоже можно почерпнуть много полезной информации. А также, добавляйте свои, есть возможность прикрепить фото или картинку.

Методы гидравлического расчета системы отопления.

Доброго всем времени суток! Сегодня я опишу как нужно делать гидравлический расчет системы отопления и что это вообще такое. Начнем с последнего вопроса.

Что такое гидравлический расчет и зачем он нужен?

Гидравлический расчет (далее ГР) — это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр). Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос — определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной. Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Теория гидравлического расчета системы отопления.

Теоретически ГР отопления основан на следующем уравнении:

Данное равенство справедливо для конкретного участка. Расшифровывается это уравнение следующим образом:

  • ΔP — линейные потери давления.
  • R — удельные потери давления в трубе.
  • l — длина труб.
  • z — потери давления в отводах, запорной арматуре.

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости. Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб:

Это уравнение Дарси — Вейсбаха. Давайте расшифруем его:

  • λ — коэффициент, зависящий от характера движения трубы.
  • d — внутренний диаметр трубы.
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из этого уравнения устанавливается важная зависимость — потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости. Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

  • ξ — коэффициент местного сопротивления (далее КМС).
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.
Читать еще:  Куда ставится насос в системе отопления

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости. Также, стоит сказать, что в случае применения низкозамерзающего теплоносителя также будет играть важную роль его плотность — чем она выше тем тяжелее циркуляционному насосу. Поэтому при переходе на «незамерзайку» возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

Отсюда получаем следующие равенства для R и z:

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Как на практике считают гидравлическое сопротивление системы отопления.

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Приближенные формулы расчета гидравлического сопротивления.

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 510 4 v 1.9 /d 1,32 Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления.

Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных. Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач. Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам. Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ. Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG — бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ — целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток — отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток — платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов. Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

Итоги статьи.

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта. Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции. По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ. Сами монтажники практически никогда не занимаются расчетами. Они везде стремятся делать одни и те же решения, которые работали у них ранее. Но то, что работало у другого человека не обязательно будет работать у вас. По этому настоятельно рекомендую обратиться к инженеру и сделать полноценный проект. На этом пока все, жду ваших вопросов в комментариях.

Выбор циркуляционного насоса для системы отопления. Часть 3

Определение напора насоса.

Следующим важным параметром, по которому подбирается циркуляционный насос, является напор.

Как мы уже отмечали в предыдущей статье, насос “заставляет” теплоноситель “бегать” по замкнутому контуру, разнося тепло по комнатам дома.

На своем пути вода встречает повороты, ответвления, сужения и расширения участков трубопровода. Кроме того, ей приходится проходить целый ряд важных элементов системы отопления: фильтр грубой очистки, запорную и регулировочную арматуры, теплообменник котла и т.д.

Все перечисленные участки пути, по которым бежит вода, оказывают сопротивление ее движению. Чтобы преодолеть это сопротивление и вовремя доставить тепло нуждающимся в этом помещениям, воде нужно передать определенную побуждающую силу.

Вот этой силой и является т акая важная характеристика, как напор, который измеряется в метрах водяного столба. Этот параметр, по сути, показывает: на какую высоту данный насос может поднять воду. Если он может поднять воду на эту высоту, то, соответственно, передаст воде такую же силу для преодоления гидравлического сопротивления трубопровода и элементов системы отопления на всем пути ее следования.

Спешим, однако, сказать, что в системе отопления сама геодезическая составляющая (количество этажей в здании, этаж, на котором стоит циркуляционный насос, а также этаж, на котором находится самый последний по высоте отопительный прибор и т.д.) не имеет никакого значения. В отличие от системы водоснабжения, где насосу приходится поднимать воду от одной точки до другой и создавать избыточное давление, система отопления является замкнутой. Теплоноситель в контуре течет за счет перепада давления, которое создает насос.

Как же все это посчитать и понять, какой напор нужен насосу?

Отталкиваться нужно от потерь давления в самой системе отопления.

Представьте, что вам нужно перевезти мебель из одного места в другое.

С чего вы начнете решение этой задачи?

Вы станете заказывать машину или сначала посмотрите объем мебели?

Конечно же, прежде чем заказывать машину, вам нужно увидеть объем перевозимого груза. Это поможет определиться с маркой машины, ее грузоподъемностью и вместимостью.

Также обстоит дело и при выборе напора насоса.

Чтобы понять, какой нужен напор, необходимо посчитать каким гидравлическим сопротивлением обладает сама система отопления, и какое препятствие она будет создавать движению воды.

Для этого расчета используют формулу:

ΔP = 1,3 * Σ [R * L] + ΣZ , где

ΔP – потеря давления в системе, Па (измеряется в Паскалях);

Как мы уже говорили, напор насоса измеряется в метрах, а систему считаем в Паскалях. Как соизмерить эти единицы, поговорим чуть дальше.

R – потери давления в трубах, Па/м;

L – длина труб в метрах всего контура отопления (подача и обратка), по которому циркулирует теплоноситель. Расчет ведется по самому длинному и нагруженному контуру (если контуров несколько). Также следует учитывать изменение диаметра трубопровода на разных участках. Поэтому длина конкретного участка считается отдельно.

Z – потери в других элементах системы, Па;

Σ – сумма (символ не несет конкретной цифры, а обозначает сумму тех чисел или параметров, который следуют за ним).

Применение формулы на практике.

По нанесенной на план схеме отопления, где уже проставлена тепловая нагрузка на каждый участок системы (нагрузку считаем, используя методику, приведенную в предыдущей статье), находим самое длинное циркуляционное кольцо. Если диаметр трубопровода на протяжении всего кольца не меняется, то просто записываем его длину. Если кольцо имеет трубы разного диаметра, то считаем общую длину труб каждого диаметра, включая подачу и обратку.

Дальше можно воспользоваться одним из двух способов определения сопротивления системы:

  1. сопротивление, заложенное в проекте (от 100 до 150 Па/м);
  2. сопротивление, создаваемое величиной расхода в зависимости от выбранной скорости движения теплоносителя – оптимальной считается скорость равная 0,3 – 0,7 м/c (по принципу: чем больше расход теплоносителя протекает через одно и то же сечение трубы, тем больше сопротивление движению теплоносителя оказывают внутренние стенки трубы и других элементов системы).
Читать еще:  Как улучшить отопление в частном доме

Первый способ – самый легкий для расчета. Сопротивление участков трубы закладывается на стадии проекта по показателям, выверенным на практике и прошедших апробацию в течение продолжительного времени.

Что это за показатели?

Это закладываемое сопротивление участка трубы вне зависимости от ее внутреннего диаметра, равное 100 – 150 Па/м.

Как это делается?

Практикой установлено, что гидравлическое сопротивление трубопровода, равное 100 – 150 Па/м, является наиболее приемлемым с точки зрения оптимизации по: стоимости материала, трудозатратам, выполнению требований СНиП, а также будущим энергозатратам, связанным с работой циркуляционного насоса и других устройств.

Поэтому, заложив, к примеру, сопротивление, равное 100 Па/м, проектировщик приступает к расчету расхода теплоносителя на магистралях, ветках, стояках и т.д., по которым тепло движется в отапливаемые помещения.

Рассчитав тепловые нагрузки и пользуясь заложенными в проект сопротивлением (100 Па/м), проектировщик увеличивает или уменьшает внутренний диаметр трубопровода.

А чем пользуется проектировщик, чтобы понять: когда сопротивление трубопровода при расчетной величине лежит в пределах заложенного сопротивления, а когда выходит за этот предел?

Хотя для этого есть специальные формулы, в большинстве случаев пользуются готовым таблицами, взятыми у производителя трубопровода или из приложений справочников. Пример такой таблицы вы можете посмотреть ниже (для увеличения картинки кликните левой кнопкой мышки по изображению).

Итак, чем же прост этот способ расчета сопротивления отопительной системы дома?

Тем, что измерив длину труб самого протяженного циркуляционного кольца (включая подачу и обратку), вы умножаете ее на 100 Па/м и получаете гидравлическое сопротивление основного циркуляционного кольца.

Затем полученную цифру увеличиваете на 30% (в большинстве случаев этого достаточно, чтобы учесть потери давления на угольниках, тройниках, не считая их количество и их КМС – коэффициент местного сопротивления).

Далее к полученной цифре вы прибавляете потери давления на фильтре грубой очистки в чистом состоянии (данные берутся в каталоге конкретного производителя), потери давления в котле и потери давления на запорной и регулировочной арматуре. Все перечисленные данные берутся из паспортов или каталогов конкретного производителя.

Выполнив все действия, вы рассчитали потери давления в основном циркуляционном кольце системы отопления.

“Очень долго и сложно”, – скажете вы.

Нет! На самом деле, на практике все происходит гораздо быстрее. И пример, рассмотренный ниже, доказательство этому.

Давайте посчитаем потери давления в системе отопления жилого дома, для которого мы рассчитывали расход теплоносителя.

Напомним, площадь дома равна 490 м 2 .

Предположим, что дом четырехуровневый с цокольным этажом, где находится котел и насос. В результате замера, учитывая выбранную схему системы отопления, длина всех труб самого длинного циркуляционного кольца (включая подачу и обратку) у вас получилась 90 м.

В проекте вы решили заложить потери давления в трубопроводе, равные 150 Па/м. В системе у вас заложен фильтр грубой очистки с потерями давления 5000 Па (из каталога производителя). Также установлен котел, потери давления в котором составляют 1770 Па. И не забудем добавить 30% потерь давления от потерь трубопровода на повороты, сужения и ответвления.

Подставляем полученные значения в формулу и получаем:

1,3 * (90 * 150) + 1770 + 5000 = 24320 Па.

Таковы потери давления в нашей системе.

Чтобы подобрать насос, переведем Паскали в метры.

1 м = 9807 Па (или приблизительно в 1 м – 10000 Па).

В нашем случае мы получили потерю давления в системе отопления, равную

24320 / 9807 = 2,48 м.

А теперь будем подбирать насос, но сначала поговорим о таких понятиях как:

  • кривая работы насоса;
  • рабочая точка насоса;
  • КПД.

Как произвести гидравлический расчет системы отопления?

Гидравлический расчет системы отопления

Централизованный тип постепенно уступает место автономной системе отопления. Многие принимают решение обогревать помещения собственными силами, желая создать идеальное сочетание экономичности, тепла и комфорта. Именно поэтому особую актуальность приобретает гидравлический расчет системы отопления.

На начальном этапе предстоят финансовые траты. Однако новейшее отопительное оборудование обладает инновационным подходом к процессу регулирования подачи тепла по сравнению со старым, поэтому вложенные деньги быстро окупаются. Но такую гармонию могут обеспечить лишь системы, созданные по всем правилам. Они смогут профессионально преодолеть возникающее гидравлическое сопротивление.

Для чего делается расчет

Вычисления производят в первую очередь для того, чтобы определить такие характеристики циркуляционного насоса, как производительность и напор, которые позволят системе отопления работать с наибольшей эффективностью.

Конечно, какую-то циркуляцию в контуре создаст любой насос, даже самый маломощный, но насколько экономичной будет такая схема? Часто бывает так, что и котел исправно работает и радиаторов в доме достаточно, но они не греют из-за слабой циркуляции в системе.

Чтобы контуры отопления работали в полную силу, необходимо, чтобы насос преодолел гидравлическое сопротивление элементов системы потоку воды в трубах, а также потери давления. Но и насос большей мощности, чем нужно, также приведет к нежелательным эффектам. Кроме повышенного расхода электроэнергии, превышение давления плохо скажется на долговечности соединений, а увеличение скорости продвижения теплоносителя приведет к возникновению шумов.

Правильно рассчитанное гидравлическое сопротивление и качественная регулирующая арматура – наиболее эффективное сочетание.

Соблюдение ключевых условий обеспечивают следующие факторы:

  • снабжение отопительных приборов должно осуществляться в достаточном объеме для идеального баланса в помещении при температурных колебаниях воздуха снаружи и в жилище;
  • минимизация затрат на эксплуатацию, чтобы преодолеть системное гидравлическое сопротивление;
  • снижение капитальных затрат во время прокладки отопления.

Что учитывается в расчете?

Перед тем как начинать вычисления, следует выполнить ряд графиче

ских действий (часто для этого применяется специальная программа). Гидравлический расчет предполагает определение показателя баланса тепла помещения, в котором происходит отопительный процесс.

Для расчета системы рассматривается самый протяженный контур отопления, включающий наибольшее количество приборов, фитингов, регулирующей и запорной арматуры и наибольший перепад давления по высоте. В расчете участвуют такие величины:

  • материал трубопроводов;
  • суммарная длина всех участков трубы;
  • диаметр трубопровода;
  • изгибы трубопровода;
  • сопротивление фитингов, арматуры и отопительных приборов;
  • наличие байпасов;
  • текучесть теплоносителя.

Чтобы учесть все эти параметры существуют специализированные компьютерные программы, как пример — «НТП Трубопровод», «Oventrop CO», HERZ С.О. версии 3.5. или множество их аналогов, облегчающие специалистам производство расчетов.

Они содержат необходимые справочные данные по каждому элементу системы теплоснабжения и позволяет автоматизировать сам расчет. Однако проделать львиную долю работы, определить узловые точки и внести все данные для расчета и особенности схемы трубопровода придется пользователю. Для удобства целесообразно постепенно заполнять заранее созданную форму в MS excel.

Сделать верные расчеты в части преодоления сопротивления – это самый трудоемкий, но нео

бходимый шаг при проектировании отопительных систем водяного типа.

Выбор радиаторов и длины участков трубопровода

Необходимо определиться с видом устройств для отопления и проставить места их расположение на плане помещения. Далее должно быть принято решение об итоговой конфигурации отопительной системы, вида трубопровода (однотрубный или двухтрубный), арматуры для запора и регулирования (клапана, регуляторы, вентили, датчики давления, расхода и температуры).

Затем на вычерченной схеме указывается номер тепловых нагрузок и точная длина участков, для которых производится расчет. В заключении определяется «циркулирующее кольцо». Оно представляет собой контур замкнутого вида, который включает в себя все последовательные трубопроводные участки, на которых ожидается повышенный расход носителя тепла на расстоянии от источника, излучающего теплоэнергию, до самого дальнего прибора отопления (при двухконтурной системе) или до приборной ветки (при однотрубной системе) и назад к отопительному механизму.

Нюансы

При гидравлическом расчете с помощью компьютера excel – не единственная, хоть и наиболее простая. Для данного вида подсчетов разработаны специализированные программы, с которыми работать значительно проще.

В роли расчетного трубопровода обычно выступает участок, имеющий неизменный расход носителя тепла и постоянный диаметр. Так будет проще получить правильные данные. Он определяется по тепловому балансу помещения.

Нумерация участков должна происходить от теплового источника. Чтобы обозначить узловые точки на трубопроводе, который осуществляет подачу, в местах ответвлений применяют буквы алфавита. На магистралях сборного типа в соответствующих узлах их обозначают штрихами (пример хорошо это иллюстрирует).

Узловые точки на ответвлениях приборных веток обозначаются арабскими цифрами. Каждая соответствует номеру этажа, если применяется система горизонтального типа, или номеру ветки-стояка с приборами, если речь идет о вертикальной системе. В номер всегда входят две цифры – начало и конец участка. Длина трубопроводных участков определяется по плану, который вычерчивается в масштабе. Точность составляет 0,1 м.

Расчет однотрубной системы отопления рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления. При этом следует применять верхнюю разводку, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз».

Ссылка на основную публикацию
Adblock
detector